Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

329 lines
13 KiB

import argparse
import os
import resource
from contextlib import nullcontext
from functools import partial
from typing import Optional, Tuple
import torch
import torch.distributed as dist
import torch.nn as nn
from attn import SUPPORT_XFORMERS, replace_xformers
from data_utils import load_json, prepare_dataloader, save_json
from datasets import load_dataset
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import LlamaForCausalLM
from transformers.models.llama.tokenization_llama import LlamaTokenizer
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin
from colossalai.cluster import DistCoordinator
from colossalai.lazy import LazyInitContext
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device
MODEL_CONFIGS = {
"7b": LlamaConfig(max_position_embeddings=4096),
"13b": LlamaConfig(
hidden_size=5120,
intermediate_size=13824,
num_hidden_layers=40,
num_attention_heads=40,
max_position_embeddings=4096,
),
"70b": LlamaConfig(
hidden_size=8192,
intermediate_size=28672,
num_hidden_layers=80,
num_attention_heads=64,
max_position_embeddings=4096,
num_key_value_heads=8,
),
}
def get_model_numel(model: nn.Module) -> int:
return sum(p.numel() for p in model.parameters())
def format_numel_str(numel: int) -> str:
B = 1024**3
M = 1024**2
K = 1024
if numel >= B:
return f"{numel / B:.2f} B"
elif numel >= M:
return f"{numel / M:.2f} M"
elif numel >= K:
return f"{numel / K:.2f} K"
else:
return f"{numel}"
def tokenize_batch_for_pretrain(batch, tokenizer: Optional[LlamaTokenizer] = None, max_length: int = 2048):
texts = [sample["text"] for sample in batch]
data = tokenizer(texts, return_tensors="pt", padding="max_length", truncation=True, max_length=max_length)
data = {k: v.cuda() for k, v in data.items()}
data["labels"] = data["input_ids"].clone()
return data
def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor:
dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
tensor.div_(dist.get_world_size())
return tensor
def save(
booster: Booster,
model: nn.Module,
optimizer: Optimizer,
lr_scheduler: _LRScheduler,
epoch: int,
step: int,
batch_size: int,
coordinator: DistCoordinator,
save_dir: str,
):
save_dir = os.path.join(save_dir, f"epoch{epoch}-step{step}")
os.makedirs(os.path.join(save_dir, "model"), exist_ok=True)
booster.save_model(model, os.path.join(save_dir, "model"), shard=True)
booster.save_optimizer(optimizer, os.path.join(save_dir, "optimizer"), shard=True)
booster.save_lr_scheduler(lr_scheduler, os.path.join(save_dir, "lr_scheduler"))
running_states = {
"epoch": epoch,
"step": step,
"sample_start_index": step * batch_size,
}
if coordinator.is_master():
save_json(running_states, os.path.join(save_dir, "running_states.json"))
def load(
booster: Booster, model: nn.Module, optimizer: Optimizer, lr_scheduler: _LRScheduler, load_dir: str
) -> Tuple[int, int, int]:
booster.load_model(model, os.path.join(load_dir, "model"))
booster.load_optimizer(optimizer, os.path.join(load_dir, "optimizer"))
booster.load_lr_scheduler(lr_scheduler, os.path.join(load_dir, "lr_scheduler"))
running_states = load_json(os.path.join(load_dir, "running_states.json"))
return running_states["epoch"], running_states["step"], running_states["sample_start_index"]
def _criterion(outputs, inputs):
return outputs.loss
def main():
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", type=str, default="7b", help="Model configuration")
parser.add_argument(
"-p",
"--plugin",
choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "hybrid_parallel"],
default="gemini",
help="Choose which plugin to use",
)
parser.add_argument(
"-d", "--dataset", type=str, default="togethercomputer/RedPajama-Data-1T-Sample", help="Data set path"
)
parser.add_argument("-e", "--num_epochs", type=int, default=1, help="Number of epochs")
parser.add_argument("-b", "--batch_size", type=int, default=2, help="Local batch size")
parser.add_argument("--lr", type=float, default=3e-4, help="Learning rate")
parser.add_argument("-w", "--weigth_decay", type=float, default=0.1, help="Weight decay")
parser.add_argument("-s", "--warmup_steps", type=int, default=2000, help="Warmup steps")
parser.add_argument("-g", "--grad_checkpoint", action="store_true", help="Use gradient checkpointing")
parser.add_argument("-l", "--max_length", type=int, default=4096, help="Max sequence length")
parser.add_argument("-x", "--mixed_precision", default="fp16", choices=["fp16", "bf16"], help="Mixed precision")
parser.add_argument("-i", "--save_interval", type=int, default=1000, help="Save interval")
parser.add_argument("-o", "--save_dir", type=str, default="checkpoint", help="Checkpoint directory")
parser.add_argument("-f", "--load", type=str, default=None, help="Load checkpoint")
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping")
parser.add_argument("-t", "--tensorboard_dir", type=str, default="tb_logs", help="Tensorboard directory")
parser.add_argument("-a", "--flash_attention", action="store_true", help="Use Flash Attention")
args = parser.parse_args()
# ==============================
# Initialize Distributed Training
# ==============================
colossalai.launch_from_torch({})
coordinator = DistCoordinator()
# ==============================
# Initialize Booster
# ==============================
if args.plugin == "gemini":
plugin = GeminiPlugin(precision=args.mixed_precision, initial_scale=2**16, max_norm=args.grad_clip)
elif args.plugin == "gemini_auto":
plugin = GeminiPlugin(
precision=args.mixed_precision, placement_policy="auto", initial_scale=2**16, max_norm=args.grad_clip
)
elif args.plugin == "zero2":
plugin = LowLevelZeroPlugin(
stage=2, precision=args.mixed_precision, initial_scale=2**16, max_norm=args.grad_clip
)
elif args.plugin == "zero2_cpu":
plugin = LowLevelZeroPlugin(
stage=2, precision=args.mixed_precision, initial_scale=2**16, cpu_offload=True, max_norm=args.grad_clip
)
elif args.plugin == "hybrid_parallel":
# modify the param accordingly, default configuration is for llama2-7b
plugin = HybridParallelPlugin(
tp_size=4,
pp_size=2,
num_microbatches=None,
microbatch_size=1,
enable_jit_fused=False,
zero_stage=0,
precision="fp32",
initial_scale=1,
)
else:
raise ValueError(f"Unknown plugin {args.plugin}")
booster = Booster(plugin=plugin)
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
print_flag = (not use_pipeline and coordinator.is_master()) or (use_pipeline and is_pp_last_stage)
# ==============================
# Initialize Tensorboard
# ==============================
if print_flag:
os.makedirs(args.tensorboard_dir, exist_ok=True)
writer = SummaryWriter(args.tensorboard_dir)
# ==============================
# Initialize Tokenizer, Dataset and Dataloader
# ==============================
tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
# follows fast chat: https://github.com/lm-sys/FastChat/blob/main/fastchat/train/train.py#L257
tokenizer.pad_token = tokenizer.unk_token
dataset = load_dataset(args.dataset)
train_ds = dataset["train"]
dataloader = prepare_dataloader(
train_ds,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
collate_fn=partial(tokenize_batch_for_pretrain, tokenizer=tokenizer, max_length=args.max_length),
)
# ==============================
# Initialize Model, Optimizer and LR Scheduler
# ==============================
config = MODEL_CONFIGS[args.config]
# use lazy init when using GeminiPlugin
init_ctx = (
LazyInitContext(default_device=get_current_device()) if isinstance(plugin, GeminiPlugin) else nullcontext()
)
with init_ctx:
model = LlamaForCausalLM(config)
if args.grad_checkpoint:
model.gradient_checkpointing_enable()
if args.flash_attention:
assert SUPPORT_XFORMERS, "Use flash attention while xfomers is not installed"
replace_xformers(model)
model_numel = get_model_numel(model)
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}")
optimizer = HybridAdam(model.parameters(), lr=args.lr, betas=(0.9, 0.95), weight_decay=args.weigth_decay)
lr_scheduler = CosineAnnealingWarmupLR(
optimizer, total_steps=args.num_epochs * len(dataloader), warmup_steps=args.warmup_steps, eta_min=0.1 * args.lr
)
default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16
torch.set_default_dtype(default_dtype)
model, optimizer, _, dataloader, lr_scheduler = booster.boost(
model, optimizer, dataloader=dataloader, lr_scheduler=lr_scheduler
)
torch.set_default_dtype(torch.float)
coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
coordinator.print_on_master(
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024:.2f} MB"
)
# load checkpoint if specified
start_epoch = 0
start_step = 0
sampler_start_idx = 0
if args.load is not None:
coordinator.print_on_master("Loading checkpoint")
start_epoch, start_step, sampler_start_idx = load(booster, model, optimizer, lr_scheduler, args.load)
coordinator.print_on_master(f"Loaded checkpoint {args.load} at epoch {start_epoch} step {start_step}")
num_steps_per_epoch = len(dataloader)
# if resume training, set the sampler start index to the correct value
dataloader.sampler.set_start_index(sampler_start_idx)
for epoch in range(start_epoch, args.num_epochs):
dataloader.sampler.set_epoch(epoch)
step_nums = num_steps_per_epoch - start_step
dataloader_iter = iter(dataloader)
with tqdm(
range(step_nums),
desc=f"Epoch {epoch}",
disable=not print_flag,
total=num_steps_per_epoch,
initial=start_step,
) as pbar:
for step in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(
dataloader_iter, model, _criterion, optimizer, return_loss=True, return_outputs=True
)
loss = outputs["loss"]
else:
batch = next(dataloader_iter)
outputs = model(**batch)
loss = outputs[0]
booster.backward(loss, optimizer)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if not use_pipeline:
all_reduce_mean(loss)
if print_flag:
pbar.set_postfix({"loss": loss.item()})
writer.add_scalar("loss", loss.item(), epoch * num_steps_per_epoch + step)
if args.save_interval > 0 and (step + 1) % args.save_interval == 0:
coordinator.print_on_master(f"Saving checkpoint")
save(
booster,
model,
optimizer,
lr_scheduler,
epoch,
step + 1,
args.batch_size,
coordinator,
args.save_dir,
)
coordinator.print_on_master(f"Saved checkpoint at epoch {epoch} step {step + 1}")
# the continue epochs are not resumed, so we need to reset the sampler start index and start step
dataloader.sampler.set_start_index(0)
start_step = 0
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
if __name__ == "__main__":
main()