ColossalAI/tests/kit/model_zoo/transformers/gpt.py

97 lines
3.9 KiB
Python

import torch
import transformers
from ..registry import ModelAttribute, model_zoo
# ===============================
# Register single-sentence GPT
# ===============================
BATCH_SIZE = 1 # it can only be 1 as GPT cannot handle batch sizes > 1 if no padding token is defined.
SEQ_LENGTH = 16
def data_gen():
# Generated from following code snippet
#
# from transformers import GPT2Tokenizer
# input = 'Hello, my dog is cute'
# tokenized_input = tokenizer(input, return_tensors='pt')
# input_ids = tokenized_input['input_ids']
# attention_mask = tokenized_input['attention_mask']
input_ids = torch.tensor([[15496, 11, 616, 3290, 318, 13779]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_gen_for_lm():
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen()
data['labels'] = data['input_ids'].clone()
return data
def data_gen_for_token_classification():
# token classification data gen
# `labels` is the type not the token id for token classification, 0 or 1
data = data_gen()
data['labels'] = torch.tensor([[0, 0, 0, 0, 0, 0]], dtype=torch.int64)
return data
def data_gen_for_sequence_classification():
# sequence classification data gen
data = data_gen()
data['labels'] = torch.tensor([0], dtype=torch.int64)
return data
# define output transform function
output_transform_fn = lambda x: x
# define loss function
loss_fn_for_gpt2_model = lambda x: x.last_hidden_state.mean()
loss_fn = lambda x: x.loss
config = transformers.GPT2Config(n_layer=2,
n_head=4,
vocab_size=50258,
attn_pdrop=0,
embd_pdrop=0,
resid_pdrop=0,
summary_first_dropout=0,
hidden_dropout=0,
problem_type="single_label_classification")
# register the following models
model_zoo.register(name='transformers_gpt',
model_fn=lambda: transformers.GPT2Model(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_gpt2_model,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_gpt_lm',
model_fn=lambda: transformers.GPT2LMHeadModel(config),
data_gen_fn=data_gen_for_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_gpt_double_heads',
model_fn=lambda: transformers.GPT2DoubleHeadsModel(config),
data_gen_fn=data_gen_for_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_gpt_for_token_classification',
model_fn=lambda: transformers.GPT2ForTokenClassification(config),
data_gen_fn=data_gen_for_token_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))
model_zoo.register(name='transformers_gpt_for_sequence_classification',
model_fn=lambda: transformers.GPT2ForSequenceClassification(config),
data_gen_fn=data_gen_for_sequence_classification,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True))