You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/Chat/coati/dataset/reward_dataset.py

113 lines
4.0 KiB

from typing import Callable
from torch.utils.data import Dataset
from tqdm import tqdm
from .utils import is_rank_0
# Dahoas/rm-static
class RmStaticDataset(Dataset):
"""
Dataset for reward model
Args:
dataset: dataset for reward model
tokenizer: tokenizer for reward model
max_length: max length of input
special_token: special token at the end of sentence
"""
def __init__(self, dataset, tokenizer: Callable, max_length: int, special_token=None) -> None:
super().__init__()
self.chosen = []
self.reject = []
if special_token is None:
self.end_token = tokenizer.eos_token
else:
self.end_token = special_token
for data in tqdm(dataset, disable=not is_rank_0()):
prompt = data['prompt']
chosen = prompt + data['chosen'] + self.end_token
chosen_token = tokenizer(chosen,
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="pt")
self.chosen.append({
"input_ids": chosen_token['input_ids'],
"attention_mask": chosen_token['attention_mask']
})
reject = prompt + data['rejected'] + self.end_token
reject_token = tokenizer(reject,
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="pt")
self.reject.append({
"input_ids": reject_token['input_ids'],
"attention_mask": reject_token['attention_mask']
})
def __len__(self):
length = len(self.chosen)
return length
def __getitem__(self, idx):
return self.chosen[idx]["input_ids"], self.chosen[idx]["attention_mask"], self.reject[idx][
"input_ids"], self.reject[idx]["attention_mask"]
# Anthropic/hh-rlhf
class HhRlhfDataset(Dataset):
"""
Dataset for reward model
Args:
dataset: dataset for reward model
tokenizer: tokenizer for reward model
max_length: max length of input
special_token: special token at the end of sentence
"""
def __init__(self, dataset, tokenizer: Callable, max_length: int, special_token=None) -> None:
super().__init__()
self.chosen = []
self.reject = []
if special_token is None:
self.end_token = tokenizer.eos_token
else:
self.end_token = special_token
for data in tqdm(dataset, disable=not is_rank_0()):
chosen = data['chosen'] + self.end_token
chosen_token = tokenizer(chosen,
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="pt")
self.chosen.append({
"input_ids": chosen_token['input_ids'],
"attention_mask": chosen_token['attention_mask']
})
reject = data['rejected'] + self.end_token
reject_token = tokenizer(reject,
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="pt")
self.reject.append({
"input_ids": reject_token['input_ids'],
"attention_mask": reject_token['attention_mask']
})
def __len__(self):
length = len(self.chosen)
return length
def __getitem__(self, idx):
return self.chosen[idx]["input_ids"], self.chosen[idx]["attention_mask"], self.reject[idx][
"input_ids"], self.reject[idx]["attention_mask"]