mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.1 KiB
78 lines
2.1 KiB
import torch
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
from torch import nn
|
|
|
|
# helper function
|
|
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
|
|
def eval_decorator(fn):
|
|
|
|
def inner(model, *args, **kwargs):
|
|
was_training = model.training
|
|
model.eval()
|
|
out = fn(model, *args, **kwargs)
|
|
model.train(was_training)
|
|
return out
|
|
|
|
return inner
|
|
|
|
|
|
# top k filtering
|
|
|
|
|
|
def top_k(logits, thres=0.9):
|
|
k = int((1 - thres) * logits.shape[-1])
|
|
val, ind = torch.topk(logits, k)
|
|
probs = torch.full_like(logits, float("-inf"))
|
|
probs.scatter_(1, ind, val)
|
|
return probs
|
|
|
|
|
|
class AutoregressiveWrapper(nn.Module):
|
|
|
|
def __init__(self, net, max_seq_len=2048, pad_value=0):
|
|
super().__init__()
|
|
self.max_seq_len = max_seq_len
|
|
self.pad_value = pad_value
|
|
self.net = net
|
|
|
|
@torch.no_grad()
|
|
@eval_decorator
|
|
def generate(self, start_tokens, seq_len, eos_token=None, temperature=1.0, filter_thres=0.9, **kwargs):
|
|
b, t, device = *start_tokens.shape, start_tokens.device
|
|
|
|
out = start_tokens
|
|
|
|
for _ in range(seq_len):
|
|
logits = self.net(out, **kwargs)[:, -1, :]
|
|
|
|
filtered_logits = top_k(logits, thres=filter_thres)
|
|
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
|
|
|
sample = torch.multinomial(probs, 1)
|
|
|
|
out = torch.cat((out, sample), dim=-1)
|
|
|
|
if exists(eos_token):
|
|
is_eos_token = out == eos_token
|
|
|
|
if is_eos_token.any(dim=-1).all():
|
|
# mask out everything after the eos tokens
|
|
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
|
|
mask = shifted_is_eos_tokens.float().cumsum(dim=-1) >= 1
|
|
out = out.masked_fill(mask, self.pad_value)
|
|
break
|
|
|
|
out = out[:, t:]
|
|
return out
|
|
|
|
def forward(self, x, **kwargs):
|
|
x_inp, x_labels = x[:, :-1], x[:, 1:]
|
|
logits = self.net(x_inp, **kwargs)
|
|
return F.cross_entropy(rearrange(logits, "b c n -> b n c"), x_labels)
|