You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalChat/coati/trainer/sft.py

174 lines
6.6 KiB

"""
SFT trainer
"""
import os
from typing import Optional
import torch
from coati.trainer.utils import all_reduce_mean
from coati.utils import AccumulativeMeanMeter, save_checkpoint
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
from tqdm import trange
from colossalai.booster import Booster
from colossalai.cluster import DistCoordinator
from .base import SLTrainer
from .utils import is_rank_0, to_device
class SFTTrainer(SLTrainer):
"""
Trainer to use while training reward model.
Args:
model (torch.nn.Module): the model to train
strategy (Strategy): the strategy to use for training
optim(Optimizer): the optimizer to use for training
lr_scheduler(_LRScheduler): the lr scheduler to use for training
max_epochs (int, defaults to 2): the number of epochs to train
accumulation_steps (int, defaults to 8): the number of steps to accumulate gradients
"""
def __init__(
self,
model,
booster: Booster,
optim: Optimizer,
lr_scheduler: _LRScheduler,
max_epochs: int = 2,
accumulation_steps: int = 8,
start_epoch=0,
save_interval: int = None,
save_dir: str = None,
coordinator: Optional[DistCoordinator] = None,
) -> None:
super().__init__(booster, max_epochs, model, optim, start_epoch=start_epoch)
self.accumulation_steps = accumulation_steps
self.scheduler = lr_scheduler
self.save_interval = save_interval
self.save_dir = save_dir
self.coordinator = coordinator
self.num_train_step = 0
self.num_eval_step = 0
self.accumulative_meter = AccumulativeMeanMeter()
def _before_fit(
self,
train_dataloader: DataLoader,
eval_dataloader: Optional[DataLoader] = None,
log_dir: Optional[str] = None,
use_wandb: bool = False,
):
"""
Args:
train_dataloader: the dataloader to use for training
eval_dataloader: the dataloader to use for evaluation
log_dir: the directory to save logs
use_wandb: whether to use wandb for logging
"""
self.train_dataloader = train_dataloader
self.eval_dataloader = eval_dataloader
self.writer = None
if use_wandb and is_rank_0():
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
import wandb
wandb.init(project="Coati-sft", sync_tensorboard=True)
if log_dir is not None and is_rank_0():
import os
import time
from torch.utils.tensorboard import SummaryWriter
log_dir = os.path.join(log_dir, "sft")
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
self.writer = SummaryWriter(log_dir=log_dir)
def _train(self, epoch: int):
self.model.train()
step_bar = trange(
len(self.train_dataloader) // self.accumulation_steps,
desc=f"Epoch {epoch + 1}/{self.max_epochs}",
disable=not is_rank_0(),
)
for i, batch in enumerate(self.train_dataloader):
batch = to_device(batch, torch.cuda.current_device())
batch_size = batch["input_ids"].size(0)
outputs = self.model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
loss = outputs.loss
self.booster.backward(loss=loss, optimizer=self.optimizer)
loss_mean = all_reduce_mean(tensor=loss)
self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item())
# Gradient accumulation
if (i + 1) % self.accumulation_steps == 0:
self.optimizer.step()
self.optimizer.zero_grad()
self.scheduler.step()
step_bar.set_postfix({"train/loss": self.accumulative_meter.get("loss")})
if self.writer:
self.writer.add_scalar("train/loss", self.accumulative_meter.get("loss"), self.num_train_step)
self.writer.add_scalar("train/lr", self.scheduler.get_last_lr()[0], self.num_train_step)
self.num_train_step += 1
self.accumulative_meter.reset()
step_bar.update()
# Save checkpoint
if (
self.save_dir is not None
and self.save_interval is not None
and (self.num_train_step + 1) % self.save_interval == 0
):
save_checkpoint(
save_dir=self.save_dir,
booster=self.booster,
model=self.model,
optimizer=self.optimizer,
lr_scheduler=self.scheduler,
epoch=epoch,
step=self.num_train_step + 1,
batch_size=batch_size,
coordinator=self.coordinator,
)
self.coordinator.print_on_master(
f"Saved checkpoint at epoch {epoch} step {self.num_train_step} at folder {self.save_dir}"
)
step_bar.close()
def _eval(self, epoch: int):
if self.eval_dataloader is None:
self.coordinator.print_on_master("No eval dataloader is provided, skip evaluation")
return
self.accumulative_meter.reset()
self.model.eval()
with torch.no_grad():
step_bar = trange(
len(self.eval_dataloader),
desc=f"Epoch {epoch + 1}/{self.max_epochs}",
disable=not is_rank_0(),
)
for batch in self.eval_dataloader:
batch = to_device(batch, torch.cuda.current_device())
outputs = self.model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
loss_mean = all_reduce_mean(tensor=outputs.loss)
self.accumulative_meter.add("loss", loss_mean.item(), count_update=batch["input_ids"].size(0))
step_bar.update()
loss_mean = self.accumulative_meter.get("loss")
msg = "Evaluation Result:\n"
for tag in ["loss"]:
msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n"
self.coordinator.print_on_master(msg)
os.makedirs(self.save_dir, exist_ok=True)
with open(os.path.join(self.save_dir, f"eval_result_epoch{epoch}.txt"), "w") as f:
f.write(msg)
step_bar.close()