mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
6.6 KiB
174 lines
6.6 KiB
"""
|
|
SFT trainer
|
|
"""
|
|
|
|
import os
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from coati.trainer.utils import all_reduce_mean
|
|
from coati.utils import AccumulativeMeanMeter, save_checkpoint
|
|
from torch.optim import Optimizer
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
from torch.utils.data import DataLoader
|
|
from tqdm import trange
|
|
|
|
from colossalai.booster import Booster
|
|
from colossalai.cluster import DistCoordinator
|
|
|
|
from .base import SLTrainer
|
|
from .utils import is_rank_0, to_device
|
|
|
|
|
|
class SFTTrainer(SLTrainer):
|
|
"""
|
|
Trainer to use while training reward model.
|
|
|
|
Args:
|
|
model (torch.nn.Module): the model to train
|
|
strategy (Strategy): the strategy to use for training
|
|
optim(Optimizer): the optimizer to use for training
|
|
lr_scheduler(_LRScheduler): the lr scheduler to use for training
|
|
max_epochs (int, defaults to 2): the number of epochs to train
|
|
accumulation_steps (int, defaults to 8): the number of steps to accumulate gradients
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model,
|
|
booster: Booster,
|
|
optim: Optimizer,
|
|
lr_scheduler: _LRScheduler,
|
|
max_epochs: int = 2,
|
|
accumulation_steps: int = 8,
|
|
start_epoch=0,
|
|
save_interval: int = None,
|
|
save_dir: str = None,
|
|
coordinator: Optional[DistCoordinator] = None,
|
|
) -> None:
|
|
super().__init__(booster, max_epochs, model, optim, start_epoch=start_epoch)
|
|
|
|
self.accumulation_steps = accumulation_steps
|
|
self.scheduler = lr_scheduler
|
|
self.save_interval = save_interval
|
|
self.save_dir = save_dir
|
|
self.coordinator = coordinator
|
|
self.num_train_step = 0
|
|
self.num_eval_step = 0
|
|
self.accumulative_meter = AccumulativeMeanMeter()
|
|
|
|
def _before_fit(
|
|
self,
|
|
train_dataloader: DataLoader,
|
|
eval_dataloader: Optional[DataLoader] = None,
|
|
log_dir: Optional[str] = None,
|
|
use_wandb: bool = False,
|
|
):
|
|
"""
|
|
Args:
|
|
train_dataloader: the dataloader to use for training
|
|
eval_dataloader: the dataloader to use for evaluation
|
|
log_dir: the directory to save logs
|
|
use_wandb: whether to use wandb for logging
|
|
"""
|
|
self.train_dataloader = train_dataloader
|
|
self.eval_dataloader = eval_dataloader
|
|
|
|
self.writer = None
|
|
if use_wandb and is_rank_0():
|
|
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
|
|
import wandb
|
|
|
|
wandb.init(project="Coati-sft", sync_tensorboard=True)
|
|
if log_dir is not None and is_rank_0():
|
|
import os
|
|
import time
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
log_dir = os.path.join(log_dir, "sft")
|
|
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
|
|
self.writer = SummaryWriter(log_dir=log_dir)
|
|
|
|
def _train(self, epoch: int):
|
|
self.model.train()
|
|
step_bar = trange(
|
|
len(self.train_dataloader) // self.accumulation_steps,
|
|
desc=f"Epoch {epoch + 1}/{self.max_epochs}",
|
|
disable=not is_rank_0(),
|
|
)
|
|
for i, batch in enumerate(self.train_dataloader):
|
|
batch = to_device(batch, torch.cuda.current_device())
|
|
batch_size = batch["input_ids"].size(0)
|
|
outputs = self.model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
|
|
loss = outputs.loss
|
|
|
|
self.booster.backward(loss=loss, optimizer=self.optimizer)
|
|
|
|
loss_mean = all_reduce_mean(tensor=loss)
|
|
self.accumulative_meter.add("loss", loss_mean.to(torch.float16).item())
|
|
|
|
# Gradient accumulation
|
|
if (i + 1) % self.accumulation_steps == 0:
|
|
self.optimizer.step()
|
|
self.optimizer.zero_grad()
|
|
self.scheduler.step()
|
|
|
|
step_bar.set_postfix({"train/loss": self.accumulative_meter.get("loss")})
|
|
if self.writer:
|
|
self.writer.add_scalar("train/loss", self.accumulative_meter.get("loss"), self.num_train_step)
|
|
self.writer.add_scalar("train/lr", self.scheduler.get_last_lr()[0], self.num_train_step)
|
|
self.num_train_step += 1
|
|
self.accumulative_meter.reset()
|
|
step_bar.update()
|
|
|
|
# Save checkpoint
|
|
if (
|
|
self.save_dir is not None
|
|
and self.save_interval is not None
|
|
and (self.num_train_step + 1) % self.save_interval == 0
|
|
):
|
|
save_checkpoint(
|
|
save_dir=self.save_dir,
|
|
booster=self.booster,
|
|
model=self.model,
|
|
optimizer=self.optimizer,
|
|
lr_scheduler=self.scheduler,
|
|
epoch=epoch,
|
|
step=self.num_train_step + 1,
|
|
batch_size=batch_size,
|
|
coordinator=self.coordinator,
|
|
)
|
|
self.coordinator.print_on_master(
|
|
f"Saved checkpoint at epoch {epoch} step {self.num_train_step} at folder {self.save_dir}"
|
|
)
|
|
step_bar.close()
|
|
|
|
def _eval(self, epoch: int):
|
|
if self.eval_dataloader is None:
|
|
self.coordinator.print_on_master("No eval dataloader is provided, skip evaluation")
|
|
return
|
|
self.accumulative_meter.reset()
|
|
self.model.eval()
|
|
with torch.no_grad():
|
|
step_bar = trange(
|
|
len(self.eval_dataloader),
|
|
desc=f"Epoch {epoch + 1}/{self.max_epochs}",
|
|
disable=not is_rank_0(),
|
|
)
|
|
for batch in self.eval_dataloader:
|
|
batch = to_device(batch, torch.cuda.current_device())
|
|
outputs = self.model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
|
|
loss_mean = all_reduce_mean(tensor=outputs.loss)
|
|
self.accumulative_meter.add("loss", loss_mean.item(), count_update=batch["input_ids"].size(0))
|
|
step_bar.update()
|
|
loss_mean = self.accumulative_meter.get("loss")
|
|
msg = "Evaluation Result:\n"
|
|
for tag in ["loss"]:
|
|
msg = msg + f"{tag}: {self.accumulative_meter.get(tag)}\n"
|
|
self.coordinator.print_on_master(msg)
|
|
os.makedirs(self.save_dir, exist_ok=True)
|
|
with open(os.path.join(self.save_dir, f"eval_result_epoch{epoch}.txt"), "w") as f:
|
|
f.write(msg)
|
|
step_bar.close()
|