mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
561 lines
25 KiB
561 lines
25 KiB
from typing import Callable, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
|
|
from colossalai.inference.struct import Sequence
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
|
class BatchBucket:
|
|
"""Container for a batch of Sequences, which is used to manage the batch of sequences.
|
|
|
|
Attrs:
|
|
_sequences_dict (Dict[int, Sequence]): Map sequence uid to sequence struct
|
|
seq_uid -> Sequence
|
|
_sequences_indexes (Dict[int, int]): Map sequence uid to index in the batch
|
|
seq_uid -> index in the batch (indexing used in sequence_lengths and block_tables)
|
|
_sequence_lengths (torch.Tensor): Length of each sequence in the batch.
|
|
The size of the tensor is (max_batch_size,)
|
|
_block_tables (torch.Tensor): Block table of each sequence in the batch
|
|
The size of the tensor is (max_batch_size, max_blocks_per_seq)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads,
|
|
head_dim,
|
|
max_batch_size,
|
|
max_length,
|
|
block_size,
|
|
kv_max_split_num,
|
|
fd_interm_tensor=None,
|
|
device=None,
|
|
dtype=torch.float16,
|
|
enable_streamingllm: bool = False,
|
|
start_token_size: int = 4,
|
|
generated_token_size: int = 512,
|
|
):
|
|
self.num_heads = num_heads
|
|
self.head_dim = head_dim
|
|
self.max_batch_size = max_batch_size
|
|
self.max_length = max_length # in + out len
|
|
self.block_size = block_size
|
|
self.kv_max_split_num = kv_max_split_num # Hint used for flash decoding
|
|
self.fd_interm_tensor = fd_interm_tensor
|
|
self.device = device or get_current_device()
|
|
self.dtype = dtype
|
|
|
|
self._use_spec_dec = False
|
|
self._num_tokens_to_verify = None
|
|
|
|
self.enable_streamingllm = enable_streamingllm
|
|
self.start_token_size = start_token_size
|
|
self.generated_token_size = generated_token_size
|
|
|
|
self._current_batch_size = 0
|
|
self._sequences_dict = dict()
|
|
self._sequences_indexes = dict() # deque(maxlen=self.max_batch_size)
|
|
self._sequence_lengths = torch.zeros((self.max_batch_size,), dtype=torch.int32)
|
|
self._sequence_lengths_helper = torch.zeros_like(self._sequence_lengths)
|
|
if enable_streamingllm:
|
|
max_blocks_per_seq = (start_token_size + generated_token_size + block_size - 1) // block_size + 1
|
|
else:
|
|
max_blocks_per_seq = (self.max_length + block_size - 1) // block_size
|
|
self._block_tables = torch.full((self.max_batch_size, max_blocks_per_seq), -1, dtype=torch.int32)
|
|
self._block_tables_helper = torch.full_like(self._block_tables, -1)
|
|
|
|
@property
|
|
def is_empty(self):
|
|
return self._current_batch_size == 0
|
|
|
|
@property
|
|
def current_batch_size(self):
|
|
return self._current_batch_size
|
|
|
|
def __len__(self):
|
|
return self._current_batch_size
|
|
|
|
@property
|
|
def available_batch_size(self):
|
|
return self.max_batch_size - self._current_batch_size
|
|
|
|
@property
|
|
def block_tables(self):
|
|
return self._block_tables
|
|
|
|
@property
|
|
def seq_lengths(self):
|
|
return self._sequence_lengths
|
|
|
|
@property
|
|
def seqs_ids(self):
|
|
return list(self._sequences_dict.keys())
|
|
|
|
@property
|
|
def seqs_li(self):
|
|
return list(self._sequences_dict.values())
|
|
|
|
@property
|
|
def is_compact(self):
|
|
assert len(self._sequences_dict) == len(self._sequences_indexes), "BatchBucket indexing is not consistent"
|
|
return (
|
|
len(self._sequences_dict)
|
|
== torch.nonzero(self._sequence_lengths).view(-1).numel()
|
|
== torch.nonzero(self._block_tables[:, 0] >= 0).numel()
|
|
)
|
|
|
|
@property
|
|
def use_spec_dec(self) -> bool:
|
|
return self._use_spec_dec
|
|
|
|
@property
|
|
def num_tokens_to_verify(self) -> int:
|
|
return self._num_tokens_to_verify
|
|
|
|
@property
|
|
def batch_token_ids(self) -> List[List[int]]:
|
|
out = []
|
|
for seq in self.seqs_li:
|
|
out.append(seq.input_token_id + seq.output_token_id)
|
|
return out
|
|
|
|
def streamingllm_update_batch(self, start_token_size: int, generated_token_size: int):
|
|
"""
|
|
Update sequence_lengths and block_tables when it is necessary to swap out a block.
|
|
"""
|
|
|
|
updated_block_ids = []
|
|
|
|
if self.current_batch_size > 0:
|
|
need_update = False
|
|
sequence_lengths_list = self._sequence_lengths.tolist()
|
|
block_tables_list = self._block_tables[: self._current_batch_size].tolist()
|
|
for batch_id in range(self.current_batch_size):
|
|
# We assume that the start token occupies the entire first block.
|
|
if sequence_lengths_list[batch_id] == start_token_size + generated_token_size + self.block_size - 1:
|
|
need_update = True
|
|
sequence_lengths_list[batch_id] = start_token_size + generated_token_size - 1
|
|
block_id = block_tables_list[batch_id].pop(1)
|
|
updated_block_ids.append(block_id)
|
|
block_tables_list[batch_id].append(-1)
|
|
if need_update:
|
|
self._sequence_lengths = torch.tensor(
|
|
sequence_lengths_list, dtype=self._sequence_lengths.dtype, device=self.device
|
|
)
|
|
self._block_tables = torch.tensor(block_tables_list, dtype=self._block_tables.dtype, device=self.device)
|
|
|
|
return updated_block_ids
|
|
|
|
def set_use_spec_dec(self, num_tokens_to_verify: int = 5) -> None:
|
|
"""Set batch bucket to use speculatvie decoding.
|
|
This will notify the adjust the lengths of inputs during modeling,
|
|
and let the main model verifies tokens in parallel.
|
|
"""
|
|
self._use_spec_dec = True
|
|
self._num_tokens_to_verify = num_tokens_to_verify
|
|
|
|
def reset_use_spec_dec(self) -> None:
|
|
"""Reset the usage of speculative decoding for the batch bucket"""
|
|
self._use_spec_dec = False
|
|
self._num_tokens_to_verify = None
|
|
|
|
def _make_compact(self) -> None:
|
|
# Clean and Compress the batch based on its sequences dict.
|
|
# Namely,compress sequences to the front and clean the seq lengths and block tables tensors.
|
|
# NOTE Prevent calling this method multiple times in a single step
|
|
if self.is_compact:
|
|
return
|
|
valid_seq_ids = self._sequences_dict.keys()
|
|
valid_num = len(valid_seq_ids)
|
|
valid_indexes = [self._sequences_indexes[seq_id] for seq_id in valid_seq_ids]
|
|
assert valid_num == len(self._sequences_indexes), "BatchBucket indexing is not consistent"
|
|
self._sequence_lengths_helper[:valid_num] = self._sequence_lengths[valid_indexes]
|
|
self._sequence_lengths[:] = self._sequence_lengths_helper[:]
|
|
self._block_tables_helper[:valid_num, :] = self.block_tables[valid_indexes]
|
|
self.block_tables[:] = self._block_tables_helper[:]
|
|
new_idx = 0
|
|
for seq_id in valid_seq_ids:
|
|
self._sequences_indexes[seq_id] = new_idx
|
|
new_idx += 1
|
|
self._sequence_lengths_helper.fill_(0)
|
|
self._block_tables_helper.fill_(-1)
|
|
self._current_batch_size = valid_num
|
|
|
|
def add_seq(
|
|
self,
|
|
seq: Sequence,
|
|
alloc_block_table: torch.Tensor = None,
|
|
alloc_block_table_fn: Callable[[torch.Tensor, int], None] = None,
|
|
) -> Union[torch.Tensor, None]:
|
|
"""Add a single sequence to the batch.
|
|
User could opt to provide either a block table or a function to allocate block tables.
|
|
|
|
Args:
|
|
seq (Sequence): The sequence to be added to the batch
|
|
alloc_block_table (torch.Tensor): The block tables to be copied and used for the sequence
|
|
alloc_block_table_fn (Callable[[torch.Tensor, int], None]): The function to allocate blocks for the sequence,
|
|
which is expected to reserve blocks and update status of kv-cache manager.
|
|
|
|
Returns:
|
|
block_table (torch.Tensor): The block table of the added sequence, used for block allocation in kv-cache manager.
|
|
None if the sequence cannot be added.
|
|
"""
|
|
block_table = None
|
|
# TODO might consider sorting by length
|
|
if self._current_batch_size < self.max_batch_size:
|
|
self._sequences_dict[seq.request_id] = seq
|
|
self._sequences_indexes[seq.request_id] = self._current_batch_size
|
|
self._sequence_lengths[self._current_batch_size] = seq.sentence_len
|
|
# NOTE the added seq still require block table allocation by kvcache manager
|
|
block_table = self._block_tables[self._current_batch_size - 1]
|
|
if alloc_block_table is not None:
|
|
# copy block ids from provided block tables
|
|
self._block_tables[self._current_batch_size - 1] = alloc_block_table
|
|
elif alloc_block_table_fn:
|
|
alloc_block_table_fn(block_table, self._sequence_lengths[self._current_batch_size - 1].item())
|
|
self._current_batch_size += 1
|
|
return block_table
|
|
|
|
def add_seqs(
|
|
self,
|
|
seqs: List[Sequence],
|
|
alloc_block_tables: torch.Tensor = None,
|
|
alloc_block_tables_fn: Callable[[torch.Tensor, torch.Tensor], None] = None,
|
|
) -> Union[torch.Tensor, None]:
|
|
"""Add a list of sequences to the batch.
|
|
User could opt to provide either block tables or a function to allocate block tables.
|
|
|
|
Args:
|
|
seqs (List[Sequence]): The sequences to be added to the batch
|
|
alloc_block_tables (torch.Tensor): The block tables to be copied and used for the sequence
|
|
alloc_block_table_fn (Callable[[torch.Tensor, torch.Tensor], None]): The function to allocate blocks for multiple sequences,
|
|
which is expected to reserve blocks and update status of kv-cache manager.
|
|
|
|
Returns:
|
|
block_tables (torch.Tensor): The block tables of the added sequences, used for block allocation in kv-cache manager.
|
|
None if the sequences cannot be added.
|
|
"""
|
|
|
|
assert (
|
|
alloc_block_tables is None or alloc_block_tables_fn is None
|
|
), "`alloc_block_tables` and `alloc_block_tables_fn` cannot be provided at the same time"
|
|
|
|
num_seqs_to_add = min(self.max_batch_size - self._current_batch_size, len(seqs))
|
|
block_tables = None
|
|
if num_seqs_to_add > 0:
|
|
for i, seq in enumerate(seqs[:num_seqs_to_add]):
|
|
self._sequences_dict[seq.request_id] = seq
|
|
self._sequences_indexes[seq.request_id] = self._current_batch_size + i
|
|
# TODO external (rename): modify Sequence.sentence_len to seq_len
|
|
self._sequence_lengths[self._current_batch_size : self._current_batch_size + num_seqs_to_add] = (
|
|
torch.tensor([seq.sentence_len for seq in seqs[:num_seqs_to_add]], dtype=torch.int32)
|
|
)
|
|
# NOTE block tables to be updated by kvcache manager
|
|
block_tables = self._block_tables[self._current_batch_size : self._current_batch_size + num_seqs_to_add]
|
|
if alloc_block_tables is not None:
|
|
# copy block ids from provided block tables
|
|
self._block_tables[self._current_batch_size : self._current_batch_size + num_seqs_to_add] = (
|
|
alloc_block_tables
|
|
)
|
|
elif alloc_block_tables_fn:
|
|
alloc_block_tables_fn(
|
|
block_tables,
|
|
self._sequence_lengths[self._current_batch_size : self._current_batch_size + num_seqs_to_add],
|
|
)
|
|
|
|
self._current_batch_size += num_seqs_to_add
|
|
seqs[:] = seqs[num_seqs_to_add:]
|
|
|
|
return block_tables
|
|
|
|
def pop_seq_update_batch(
|
|
self, request_id: int, free_block_table_fn: Callable[[torch.Tensor], None] = None
|
|
) -> Tuple[Sequence, Union[torch.Tensor, None]]:
|
|
"""Pop a single sequence by id from the batch, and update the batch bucket status.
|
|
|
|
Args:
|
|
request_id (int): The uid of the sequence
|
|
free_block_table_fn (Callable): The function to free the block table of a sequence,
|
|
if not provided, then we have to release the block table manually after calling this method
|
|
|
|
Returns:
|
|
A tuple of: seq (Sequence): The target sequence
|
|
and block_table (torch.Tensor): block table of the target sequence indicating corresponding blocks,
|
|
none if the sequence is not found or free_block_table_fn is provided.
|
|
"""
|
|
seq: Sequence = self._sequences_dict.get(request_id)
|
|
block_table = None
|
|
if seq is not None:
|
|
assert request_id in self._sequences_indexes, "Inconsistency in BatchBucket indexing"
|
|
self._sequences_dict.pop(request_id)
|
|
seq_b_idx = self._sequences_indexes.get(request_id)
|
|
|
|
if self.current_batch_size > 1:
|
|
# replace seq length of the target seq with that of the last seq in the batch
|
|
last_seq_b_idx = self.current_batch_size - 1
|
|
last_seq_id = next(
|
|
(uid for uid, index in self._sequences_indexes.items() if index == last_seq_b_idx),
|
|
None,
|
|
)
|
|
assert last_seq_id is not None
|
|
self._sequences_indexes[last_seq_id] = seq_b_idx
|
|
self._sequence_lengths[seq_b_idx] = self._sequence_lengths[last_seq_b_idx]
|
|
self._sequence_lengths[last_seq_b_idx].fill_(0)
|
|
# free the block table of the seq, or return a copy of the block table (to be processed outside)
|
|
if free_block_table_fn:
|
|
free_block_table_fn(self._block_tables[seq_b_idx])
|
|
else:
|
|
block_table = self._block_tables[seq_b_idx].detach().clone()
|
|
# replace block table of the target seq with that of the last seq in the batch
|
|
self._block_tables[seq_b_idx] = self._block_tables[last_seq_b_idx]
|
|
self._block_tables[last_seq_b_idx].fill_(-1)
|
|
else:
|
|
if free_block_table_fn:
|
|
free_block_table_fn(self._block_tables[0])
|
|
else:
|
|
block_table = self._block_tables[0].detach().clone()
|
|
self._sequence_lengths[0].fill_(0)
|
|
self._block_tables[0].fill_(-1)
|
|
self._sequences_indexes.pop(request_id)
|
|
self._current_batch_size -= 1
|
|
|
|
return seq, block_table
|
|
|
|
def pop_seqs(
|
|
self, request_ids: List[int], free_block_table_fn: Callable[[torch.Tensor], None] = None
|
|
) -> Tuple[List[Sequence], List[torch.Tensor]]:
|
|
"""Iteratively pop a list of sequences by uid.
|
|
|
|
Args:
|
|
request_ids (List[int]): The uids of the sequences
|
|
free_block_table_fn (Callable): The function to free the block table of a sequence,
|
|
if not provided, then we have to release the block table manually after calling this method
|
|
Returns:
|
|
A tuple of: seqs (List[Sequence]): The target sequences
|
|
and block_tables (List[torch.Tensor]): block tables of the target sequences indicating corresponding blocks
|
|
"""
|
|
seqs = []
|
|
block_tables = []
|
|
for request_id in request_ids:
|
|
seq, block_table = self.pop_seq_update_batch(request_id, free_block_table_fn)
|
|
if seq is not None:
|
|
seqs.append(seq)
|
|
if block_table is not None:
|
|
block_tables.append(block_table)
|
|
return seqs, block_tables
|
|
|
|
def pop_n_seqs(
|
|
self, n: int, free_block_table_fn: Callable[[torch.Tensor], None] = None
|
|
) -> Tuple[List[Sequence], List[torch.Tensor]]:
|
|
"""Pop the first n sequences in the batch (FIFO).
|
|
If n is greater than the current batch szie, pop all the sequences in the batch.
|
|
|
|
Args:
|
|
n (int): The number of sequences to pop out
|
|
free_block_table_fn (Callable): The function to free the block table of a single sequence
|
|
Returns:
|
|
A tuple of: seqs (List[Sequence]): The target sequences,
|
|
and block_tables (List[torch.Tensor]): block tables of the target sequences indicating corresponding blocks
|
|
"""
|
|
# NOTE Prevent calling this method multiple times in a single step
|
|
seqs = []
|
|
block_tables = []
|
|
n = min(n, self.current_batch_size)
|
|
seq_ids = list(self._sequences_dict.keys())[:n]
|
|
for seq_id in seq_ids:
|
|
seq = self._sequences_dict.pop(seq_id)
|
|
seq_b_idx = self._sequences_indexes.pop(seq_id)
|
|
if free_block_table_fn:
|
|
free_block_table_fn(self.block_tables[seq_b_idx])
|
|
else:
|
|
block_tables.append(self.block_tables[seq_b_idx].detach().clone())
|
|
seqs.append(seq)
|
|
if not self.is_compact:
|
|
self._make_compact()
|
|
|
|
return seqs, block_tables
|
|
|
|
def pop_finished(
|
|
self, free_block_table_fn: Callable[[torch.Tensor], None] = None
|
|
) -> Tuple[List[Sequence], List[torch.Tensor]]:
|
|
"""Pop finished sequences in the batch and a list of block tables of the finished sequences,
|
|
if free_block_table_fn is not provided.
|
|
|
|
Args:
|
|
free_block_table_fn (Callable): The function to free the block table of a single sequence
|
|
Returns:
|
|
A tuple of: finished_seqs (List[Sequence]): The finished sequences,
|
|
and finished_block_tables (List[torch.Tensor]): block tables of the finished sequences.
|
|
"""
|
|
finished_seqs = []
|
|
finished_block_tables = []
|
|
for seq in self._sequences_dict.values():
|
|
if seq.check_finish():
|
|
finished_seqs.append(seq)
|
|
# Use `pop_seq_update_batch`` to update the batch status for just a few of finished seqs,
|
|
# otherwise, pop seqs directly and then call `_make_compact` to compress the batch.
|
|
# For now, the performance difference is not significant, so we use the frist method to pop seqs.
|
|
# Precise evaluations to be done.
|
|
for seq in finished_seqs:
|
|
_, block_table = self.pop_seq_update_batch(seq.request_id, free_block_table_fn)
|
|
if block_table is not None:
|
|
finished_block_tables.append(block_table)
|
|
|
|
return finished_seqs, finished_block_tables
|
|
|
|
# TODO arg type not support beam search sampling yet
|
|
def append_batch_tokens(self, tokens: torch.Tensor) -> None:
|
|
"""Append a batch of tokens to the sequences in the batch"""
|
|
assert self.current_batch_size == tokens.size(0), "Batch size mismatch"
|
|
|
|
if self.current_batch_size > 0:
|
|
tokens = tokens.tolist()
|
|
for seq_id, seq in self._sequences_dict.items():
|
|
index_in_b = self._sequences_indexes[seq_id]
|
|
curr_tokens = tokens[index_in_b]
|
|
if not isinstance(curr_tokens, list):
|
|
curr_tokens = [curr_tokens]
|
|
seq.output_token_id += curr_tokens
|
|
seq.check_finish()
|
|
self._sequence_lengths[: self.current_batch_size] += 1
|
|
|
|
def revoke_batch_tokens(self, n_tokens: int, n_seqs: int = 1) -> None:
|
|
"""Revoke the last n output tokens of the sequences in the batch
|
|
|
|
Args:
|
|
n_tokens (int): The number of output tokens to revoke from each sequence.
|
|
It does not count in the context tokens (input tokens).
|
|
n_seqs (int): The first n sequences to revoke tokens from. Defaults to 1.
|
|
For now, speculative decoding only supports batch size 1.
|
|
"""
|
|
if n_tokens >= 1:
|
|
seqs_iter = iter(self._sequences_dict.items())
|
|
for _ in range(n_seqs):
|
|
seq_id, seq = next(seqs_iter)
|
|
assert seq.output_len >= n_tokens, "Revoking len exceeds the current output len of the sequence"
|
|
seq.output_token_id = seq.output_token_id[:-n_tokens]
|
|
seq.revoke_finished_status()
|
|
self._sequence_lengths[self._sequences_indexes[seq_id]] -= n_tokens
|
|
|
|
def clear(self, free_block_tables_fn: Optional[Callable[[torch.Tensor], None]]) -> List[int]:
|
|
"""Clear all the sequences in the batch.
|
|
|
|
free_block_tables_fn (Optional[Callable]): The function to free the block tables of all the sequences in a batch
|
|
"""
|
|
seqs = list(self._sequences_dict.values())
|
|
self._sequences_dict.clear()
|
|
self._sequences_indexes.clear()
|
|
if free_block_tables_fn:
|
|
free_block_tables_fn(self.block_tables, self._current_batch_size)
|
|
self._block_tables.fill_(-1)
|
|
self._sequence_lengths.fill_(0)
|
|
self._current_batch_size = 0
|
|
return seqs
|
|
|
|
def merge(self, other: "BatchBucket") -> List[int]:
|
|
"""Merge the sequences in the other batch into the current batch.
|
|
Merge as possible as the current batch can, if it does not have available spaces
|
|
holding all the sequences in the other batch
|
|
|
|
Usage:
|
|
> New incoming sequence added to prefil batch
|
|
prefill bb curr batch size < prefil_ratio * prefill bb max batch size
|
|
> New incoming sequence added to prefil batch
|
|
prefill bb curr batch size == prefil_ratio * prefill bb max batch size
|
|
> Pause Decoding
|
|
> Prefill
|
|
> Move sequences in prefill bb => decoding bb
|
|
> Put back the out-of-volume sequences into the running pool
|
|
|
|
Returns:
|
|
unmerged_ids (List[int]): a list of sequence uids that are not merged into the current batch
|
|
"""
|
|
unmerged_ids = []
|
|
num_seqs_to_merge = min(self.available_batch_size, other.current_batch_size)
|
|
if num_seqs_to_merge > 0:
|
|
seqs, block_tables_li = other.pop_n_seqs(num_seqs_to_merge)
|
|
block_tables = torch.stack(block_tables_li)
|
|
self.add_seqs(seqs, alloc_block_tables=block_tables)
|
|
unmerged_ids = other.seqs_ids
|
|
|
|
return unmerged_ids
|
|
|
|
########## The following methods are expected to be used in modeling ###########
|
|
|
|
# For compatibility.
|
|
# NOTE: This is an assumption way to determine the stage of the batch.
|
|
@property
|
|
def is_prompts(self) -> bool:
|
|
assert len(self._sequences_dict) > 0, "No sequence in the batch"
|
|
first_seq = next(iter(self._sequences_dict.values()))
|
|
if first_seq.output_len == 0:
|
|
return True
|
|
return False
|
|
|
|
def get_1D_inputs_spec_dec(self, n: int) -> torch.Tensor:
|
|
# Used for main model verification in **Decoding Stage**
|
|
# `n` is the number of tokens to be verified,
|
|
# and so that prepare the last `n` tokens of each sequence as the inputs
|
|
assert len(self._sequences_dict) > 0, "No sequence in the batch"
|
|
assert all(
|
|
seq.output_len >= n for seq in self._sequences_dict.values()
|
|
), "Sequence output tokens must be greater than or equal to the number of tokens to be verified."
|
|
out_li = []
|
|
seq_ids = sorted(self._sequences_indexes.keys(), key=lambda x: self._sequences_indexes[x])
|
|
for seq_id in seq_ids:
|
|
seq: Sequence = self._sequences_dict[seq_id]
|
|
out_li.extend(seq.output_token_id[-n:])
|
|
return torch.tensor(out_li, dtype=torch.long, device=self.device)
|
|
|
|
# For compatibility
|
|
def get_1D_inputs(self) -> torch.Tensor:
|
|
assert len(self._sequences_dict) > 0, "No sequence in the batch"
|
|
first_seq = next(iter(self._sequences_dict.values())) # not exactly the first sequence
|
|
if first_seq.output_len == 0:
|
|
# Assume prefill stage
|
|
assert all(
|
|
seq.output_len == 0 for seq in self._sequences_dict.values()
|
|
), "Sequence stage (Prefill/Decoding) must be the same in the batch"
|
|
out_li = []
|
|
seq_ids = sorted(self._sequences_indexes.keys(), key=lambda x: self._sequences_indexes[x])
|
|
for seq_id in seq_ids:
|
|
seq: Sequence = self._sequences_dict[seq_id]
|
|
out_li.extend(seq.input_token_id)
|
|
return torch.tensor(out_li, dtype=torch.long, device=self.device)
|
|
else:
|
|
# Assume decoding stage
|
|
if self.use_spec_dec:
|
|
# For Speculative Decoding
|
|
# the number of tokens to be verified in parallel plus the correct token in the last step
|
|
return self.get_1D_inputs_spec_dec(self.num_tokens_to_verify + 1)
|
|
assert all(
|
|
seq.output_len > 0 for seq in self._sequences_dict.values()
|
|
), "Sequence stage (Prefill/Decoding) must be the same in the batch"
|
|
assert self.is_compact, "BatchBucket is not compact"
|
|
out = torch.empty([self.current_batch_size], dtype=torch.long)
|
|
for seq_id, index_in_b in self._sequences_indexes.items():
|
|
seq: Sequence = self._sequences_dict[seq_id]
|
|
out[index_in_b] = seq.output_token_id[-1]
|
|
return out.to(device=self.device)
|
|
|
|
# For compatibility
|
|
def get_block_table_tensor(self) -> torch.Tensor:
|
|
assert self.is_compact # Debug usage
|
|
block_table = self.block_tables[: self.current_batch_size]
|
|
return block_table.to(device=self.device)
|
|
|
|
# For compatibility
|
|
def get_sequence_lengths(self) -> torch.Tensor:
|
|
assert self.is_compact # Debug usage
|
|
sequence_lengths = self.seq_lengths[: self.current_batch_size]
|
|
return sequence_lengths.to(device=self.device)
|
|
|
|
# For compatibility
|
|
@property
|
|
def fd_inter_tensor(self) -> None:
|
|
assert self.fd_interm_tensor is not None, "fd_interm_tensor is not provided"
|
|
return self.fd_interm_tensor
|
|
|
|
def __repr__(self) -> str:
|
|
return f"(sequences_dict={self._sequences_dict}, is_prompts={self.is_prompts})"
|