ColossalAI/applications/Chat/examples/train_prompts.py

223 lines
10 KiB
Python

import argparse
import warnings
import torch
import torch.distributed as dist
from coati.dataset import PromptDataset, SupervisedDataset
from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
from coati.models.llama import LlamaActor, LlamaCritic, LlamaRM
from coati.models.opt import OPTRM, OPTActor, OPTCritic
from coati.trainer import PPOTrainer
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer, BloomTokenizerFast, GPT2Tokenizer, LlamaTokenizer
from colossalai.nn.optimizer import HybridAdam
def main(args):
# configure strategy
if args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = GeminiStrategy(placement_policy='cuda', initial_scale=2**5)
elif args.strategy == 'colossalai_zero2':
strategy = LowLevelZeroStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
if args.rm_path is not None:
warnings.warn('LoRA weights should be merged with the model weights')
state_dict = torch.load(args.rm_path, map_location='cpu')
with strategy.model_init_context():
# configure model
if args.model == 'gpt2':
initial_model = GPTActor(pretrained=args.pretrain)
elif args.model == 'bloom':
initial_model = BLOOMActor(pretrained=args.pretrain)
elif args.model == 'opt':
initial_model = OPTActor(pretrained=args.pretrain)
elif args.model == 'llama':
initial_model = LlamaActor(pretrained=args.pretrain)
else:
raise ValueError(f'Unsupported actor model "{args.model}"')
if args.rm_model is None:
rm_model_name = args.model
else:
rm_model_name = args.rm_model
if rm_model_name == 'gpt2':
reward_model = GPTRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
elif rm_model_name == 'bloom':
reward_model = BLOOMRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
elif rm_model_name == 'opt':
reward_model = OPTRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
elif rm_model_name == 'llama':
reward_model = LlamaRM(pretrained=args.rm_pretrain, lora_rank=args.lora_rank)
else:
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
if args.rm_path is not None:
reward_model.load_state_dict(state_dict, strict=False)
initial_model.to(torch.float16).to(torch.cuda.current_device())
reward_model.to(torch.float16).to(torch.cuda.current_device())
if args.model == 'gpt2':
actor = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
elif args.model == 'bloom':
actor = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
elif args.model == 'opt':
actor = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
elif args.model == 'llama':
actor = LlamaActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
else:
raise ValueError(f'Unsupported actor model "{args.model}"')
if rm_model_name == 'gpt2':
critic = GPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
elif rm_model_name == 'bloom':
critic = BLOOMCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
elif rm_model_name == 'opt':
critic = OPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
elif rm_model_name == 'llama':
critic = LlamaCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
else:
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
if args.rm_path is not None:
critic.load_state_dict(state_dict, strict=False)
del state_dict
if args.strategy != 'colossalai_gemini':
critic.to(torch.float16).to(torch.cuda.current_device())
actor.to(torch.float16).to(torch.cuda.current_device())
# configure optimizer
if args.strategy.startswith('colossalai'):
actor_optim = HybridAdam(actor.parameters(), lr=1e-7)
critic_optim = HybridAdam(critic.parameters(), lr=1e-7)
else:
actor_optim = Adam(actor.parameters(), lr=1e-7)
critic_optim = Adam(critic.parameters(), lr=1e-7)
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained(
'gpt2' if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = BloomTokenizerFast.from_pretrained(
'bigscience/bloom-560m' if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained(
"facebook/opt-350m" if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'llama':
tokenizer = LlamaTokenizer.from_pretrained(
"hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer)
tokenizer.eos_token = '<\s>'
tokenizer.pad_token = tokenizer.unk_token
else:
raise ValueError(f'Unsupported model "{args.model}"')
prompt_dataset = PromptDataset(tokenizer=tokenizer, data_path=args.prompt_dataset, max_datasets_size=16384)
if dist.is_initialized() and dist.get_world_size() > 1:
prompt_sampler = DistributedSampler(prompt_dataset, shuffle=True, seed=42, drop_last=True)
else:
prompt_sampler = None
prompt_dataloader = DataLoader(prompt_dataset,
shuffle=(prompt_sampler is None),
sampler=prompt_sampler,
batch_size=args.experience_batch_size)
pretrain_dataset = SupervisedDataset(tokenizer=tokenizer,
data_path=args.pretrain_dataset,
max_datasets_size=16384,
max_length=args.max_input_len)
if dist.is_initialized() and dist.get_world_size() > 1:
pretrain_sampler = DistributedSampler(pretrain_dataset, shuffle=True, seed=42, drop_last=True)
else:
pretrain_sampler = None
pretrain_dataloader = DataLoader(pretrain_dataset,
shuffle=(pretrain_sampler is None),
sampler=pretrain_sampler,
batch_size=args.ptx_batch_size)
# NOTE: For small models like opt-1.3b, reward model and initial model are not required to be parallelized.
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model = \
strategy.prepare((actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
# configure trainer
trainer = PPOTrainer(
strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
kl_coef=args.kl_coef,
ptx_coef=args.ptx_coef,
train_batch_size=args.train_batch_size,
max_length=args.max_seq_len,
use_cache=True,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
offload_inference_models=args.strategy != 'colossalai_gemini'
)
trainer.fit(prompt_dataloader=prompt_dataloader,
pretrain_dataloader=pretrain_dataloader,
num_episodes=args.num_episodes,
num_collect_steps=args.num_collect_steps,
num_update_steps=args.num_update_steps)
# save model checkpoint after fitting
strategy.save_model(actor, args.save_path, only_rank0=True)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(actor_optim,
'actor_optim_checkpoint_prompts_%d.pt' % (torch.cuda.current_device()),
only_rank0=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--prompt_dataset', type=str, default=None, help='path to the prompt dataset')
parser.add_argument('--pretrain_dataset', type=str, default=None, help='path to the pretrained dataset')
parser.add_argument('--strategy',
choices=['ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='colossalai_zero2',
help='strategy to use')
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt', 'llama'])
parser.add_argument('--tokenizer', type=str, default=None)
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--rm_model', default=None, choices=['gpt2', 'bloom', 'opt', 'llama'])
parser.add_argument('--rm_path', type=str, default=None)
parser.add_argument('--rm_pretrain', type=str, default=None)
parser.add_argument('--save_path', type=str, default='actor_checkpoint_prompts')
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
parser.add_argument('--num_episodes', type=int, default=10)
parser.add_argument('--num_collect_steps', type=int, default=10)
parser.add_argument('--num_update_steps', type=int, default=5)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--ptx_batch_size', type=int, default=1)
parser.add_argument('--experience_batch_size', type=int, default=8)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument('--kl_coef', type=float, default=0.1)
parser.add_argument('--ptx_coef', type=float, default=0.9)
parser.add_argument('--max_input_len', type=int, default=96)
parser.add_argument('--max_seq_len', type=int, default=128)
args = parser.parse_args()
main(args)