mirror of https://github.com/hpcaitech/ColossalAI
44 lines
1.5 KiB
Python
44 lines
1.5 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
from copy import deepcopy
|
|
from functools import partial
|
|
|
|
import colossalai
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from colossalai.utils import free_port
|
|
from colossalai.zero.shard_utils.tensor_shard_strategy import \
|
|
TensorShardStrategy
|
|
from colossalai.zero.sharded_model import ShardedModelV2
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
|
|
from common import CONFIG
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
test_models = ['repeated_computed_layers', 'resnet18']
|
|
for model_name in test_models:
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
model_builder, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
|
|
model = model_builder()
|
|
shard_strategy = TensorShardStrategy()
|
|
model = model.half().cuda()
|
|
zero_model = ShardedModelV2(deepcopy(model), shard_strategy)
|
|
zero_state_dict = zero_model.state_dict()
|
|
for key, val in model.state_dict().items():
|
|
assert torch.equal(val, zero_state_dict[key])
|
|
|
|
|
|
@pytest.mark.dist
|
|
def test_zero_state_dict():
|
|
world_size = 2
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_zero_state_dict()
|