ColossalAI/tests/test_utils/test_zero_gradient_clipplin...

179 lines
5.7 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import copy
import operator as op
from functools import partial, reduce
from typing import List
import colossalai
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.logging import disable_existing_loggers
from colossalai.utils import checkpoint, clip_grad_norm_fp32, free_port
from colossalai.zero.sharded_model import ShardedModel
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.utils import clip_grad_norm_
class Enumerator:
def __init__(self, arg_names: List[str], arg_values: List[tuple]) -> None:
self.arg_names = arg_names
self.enums = Enumerator.all_enumerate(arg_values)
def __len__(self):
return len(self.enums)
def __getitem__(self, idx):
return {name: self.enums[idx][i] for i, name in enumerate(self.arg_names)}
@staticmethod
def all_enumerate(args: List[tuple]):
num_states = reduce(op.mul, map(lambda xs: len(xs), args))
idxs = [0] * len(args)
states = []
for _ in range(num_states):
states.append(tuple(args[j][idx] for j, idx in enumerate(idxs)))
if len(states) == num_states:
break
i = 0
while idxs[i] + 1 == len(args[i]):
idxs[i] = 0
i += 1
idxs[i] += 1
return states
def checkpoint_wrapper(module, enable=True):
if enable:
module.forward = partial(checkpoint, module.forward, False)
return module
class Net(nn.Module):
def __init__(self, checkpoint=False) -> None:
super().__init__()
self.fc1 = nn.Linear(5, 5)
self.fc2 = nn.Linear(5, 5)
self.fc3 = nn.Linear(5, 1)
if checkpoint:
self.fc1 = checkpoint_wrapper(self.fc1)
self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3]
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
def run_step(model, optimizer, x, enable_autocast=False, norm_type=2.0):
model.train()
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=enable_autocast):
y = model(x)
loss = y.sum()
loss = loss.float()
loss.backward()
clip_grad(model, norm_type)
optimizer.step()
def clip_grad(model, norm_type):
if isinstance(model, DDP):
clip_grad_norm_(model.parameters(), max_norm=1.0, norm_type=norm_type)
else:
clip_grad_norm_fp32(model.parameters(), max_norm=1.0, norm_type=norm_type)
def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool:
if loose:
return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3)
return torch.allclose(tensor_a, tensor_b)
def check_grads(model, zero_model, loose=False):
rank = dist.get_rank()
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_grad = zero_p.grad.clone().to(p.device)
chunks = torch.flatten(p.grad).chunk(4)
if rank >= len(chunks):
continue
grad = chunks[rank]
if zero_p.zero_shard_padding > 0:
zero_grad = zero_grad[:-zero_p.zero_shard_padding]
assert grad.dtype == zero_grad.dtype
assert allclose(grad, zero_grad, loose=loose)
def check_params(model, zero_model, loose=False):
rank = dist.get_rank()
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_shard_padding = zero_p.zero_shard_padding
zero_p = zero_p.clone().to(p.device)
chunks = torch.flatten(p).chunk(4)
if rank >= len(chunks):
continue
p = chunks[rank]
if zero_shard_padding > 0:
zero_p = zero_p[:-zero_shard_padding]
assert p.dtype == zero_p.dtype
assert allclose(p, zero_p, loose=loose)
def check_config(checkpoint=False, fp16=False, offload=False, norm_type=2.0):
model = Net(checkpoint=checkpoint).cuda()
zero_model = copy.deepcopy(model)
ddp_model = DDP(model)
offload_config = {}
if offload:
offload_config['device'] = 'cpu'
zero_model = zero_model.cpu()
zero_model = ShardedModel(zero_model, mixed_precision=fp16, offload_config=offload_config)
optimizer = torch.optim.Adam(ddp_model.parameters(), lr=1e-3)
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1e-3)
for _ in range(5):
x = torch.rand(2, 5).cuda()
run_step(ddp_model, optimizer, x, enable_autocast=fp16, norm_type=norm_type)
run_step(zero_model, zero_optimizer, x, enable_autocast=fp16, norm_type=norm_type)
check_grads(ddp_model, zero_model)
check_params(ddp_model, zero_model)
for _ in range(5):
x = torch.rand(2, 5).cuda()
run_step(ddp_model, optimizer, x, enable_autocast=False, norm_type=norm_type)
run_step(zero_model, zero_optimizer, x, enable_autocast=False, norm_type=norm_type)
check_grads(ddp_model, zero_model, loose=True)
check_params(ddp_model, zero_model, loose=True)
def run_dist(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
args = ['checkpoint', 'fp16', 'offload', 'norm_type']
arg_values = [(False, True), (False, True), (False, True), (1.0, 2.0, float('inf'))]
arg_enumerator = Enumerator(args, arg_values)
for kwargs in arg_enumerator:
if dist.get_rank() == 0:
print(kwargs)
check_config(**kwargs)
check_config()
@pytest.mark.dist
def test_zero_clip_grad():
world_size = 4
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_zero_clip_grad()