mirror of https://github.com/hpcaitech/ColossalAI
92 lines
2.9 KiB
Python
92 lines
2.9 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import os
|
|
from functools import partial
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.multiprocessing as mp
|
|
from torchvision import transforms
|
|
from torch.utils.data import DataLoader
|
|
|
|
import colossalai
|
|
from colossalai.builder import build_dataset, build_transform
|
|
from colossalai.context import ParallelMode, Config
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.utils import free_port
|
|
from colossalai.testing import rerun_if_address_is_in_use
|
|
|
|
CONFIG = Config(
|
|
dict(
|
|
train_data=dict(dataset=dict(
|
|
type='CIFAR10',
|
|
root=Path(os.environ['DATA']),
|
|
train=True,
|
|
download=True,
|
|
),
|
|
dataloader=dict(num_workers=2, batch_size=2, shuffle=True),
|
|
transform_pipeline=[
|
|
dict(type='ToTensor'),
|
|
dict(type='RandomCrop', size=32),
|
|
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
|
]),
|
|
parallel=dict(
|
|
pipeline=dict(size=1),
|
|
tensor=dict(size=1, mode=None),
|
|
),
|
|
seed=1024,
|
|
))
|
|
|
|
|
|
def run_data_sampler(rank, world_size, port):
|
|
dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend='gloo', port=port, host='localhost')
|
|
colossalai.launch(**dist_args)
|
|
|
|
dataset_cfg = gpc.config.train_data.dataset
|
|
dataloader_cfg = gpc.config.train_data.dataloader
|
|
transform_cfg = gpc.config.train_data.transform_pipeline
|
|
|
|
# build transform
|
|
transform_pipeline = [build_transform(cfg) for cfg in transform_cfg]
|
|
transform_pipeline = transforms.Compose(transform_pipeline)
|
|
dataset_cfg['transform'] = transform_pipeline
|
|
|
|
# build dataset
|
|
dataset = build_dataset(dataset_cfg)
|
|
|
|
# build dataloader
|
|
dataloader = DataLoader(dataset=dataset, **dataloader_cfg)
|
|
|
|
data_iter = iter(dataloader)
|
|
img, label = data_iter.next()
|
|
img = img[0]
|
|
|
|
if gpc.get_local_rank(ParallelMode.DATA) != 0:
|
|
img_to_compare = img.clone()
|
|
else:
|
|
img_to_compare = img
|
|
dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA))
|
|
|
|
if gpc.get_local_rank(ParallelMode.DATA) != 0:
|
|
# this is without sampler
|
|
# this should be false if data parallel sampler to given to the dataloader
|
|
assert torch.equal(img,
|
|
img_to_compare), 'Same image was distributed across ranks and expected it to be the same'
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@pytest.mark.skip
|
|
@pytest.mark.cpu
|
|
@rerun_if_address_is_in_use()
|
|
def test_data_sampler():
|
|
world_size = 4
|
|
test_func = partial(run_data_sampler, world_size=world_size, port=free_port())
|
|
mp.spawn(test_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_data_sampler()
|