ColossalAI/colossalai/nn/layer/vanilla/layers.py

291 lines
12 KiB
Python

import math
from typing import Callable
import torch
import torch.nn.functional as F
from colossalai.context import seed
from colossalai.nn import init as init
from colossalai.registry import LAYERS
from colossalai.utils.cuda import get_current_device
from torch import Tensor
from torch import nn as nn
from ..utils import to_2tuple
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
Args:
drop_prob (float, optional): probability of dropping path, defaults 0.0.
training (bool, optional): whether in training progress, defaults False.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
Args:
drop_prob (float, optional): probability of dropping path, defaults None.
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class WrappedDropout(nn.Module):
r"""Same as torch.nn.Dropout. But it is wrapped with the context of seed manager. During training, randomly zeroes
some elements of the input tensor with probability p using samples from a Bernoulli distribution. Each
channel will be zeroed out independently on every forward call. Furthermore, the outputs are scaled by a factor of
1/(1-p) during training. This means that during evaluation the module simply computes an identity function.
Args:
p (float, optional): probability of an element to be zeroed, defaults 0.5.
inplace (bool, optional): whether to do dropout in-place, default to be False.
mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
"""
def __init__(self, p: float = 0.5, inplace: bool = False, mode=None):
super().__init__()
if p < 0 or p > 1:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
self.p = p
self.inplace = inplace
if mode is None:
self.func = self.nonefunc
else:
self.func = self.normalfunc
self.mode = mode
def nonefunc(self, inputs):
return F.dropout(inputs, self.p, self.training, self.inplace)
def normalfunc(self, inputs):
with seed(self.mode):
return F.dropout(inputs, self.p, self.training, self.inplace)
def forward(self, inputs):
return self.func(inputs)
class WrappedDropPath(nn.Module):
r"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Here, it is wrapped with the context of seed manager.
Args:
p (float, optional): probability of dropping path, defaults 0.0.
mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
"""
def __init__(self, p: float = 0., mode=None):
super().__init__()
self.p = p
self.mode = mode
if self.mode is None:
self.func = self.nonefunc
else:
self.func = self.normalfunc
self.mode = mode
def nonefunc(self, inputs):
return drop_path(inputs, self.p, self.training)
def normalfunc(self, inputs):
with seed(self.mode):
return drop_path(inputs, self.p, self.training)
def forward(self, inputs):
return self.func(inputs)
@LAYERS.register_module
class VanillaPatchEmbedding(nn.Module):
r"""
2D Image to Patch Embedding
Args:
img_size (int): image size.
patch_size (int): patch size.
in_chans (int): number of channels of input image.
embed_size (int): size of embedding.
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
flatten (bool, optional): whether to flatten output tensor, defaults to True.
weight_initializer (:class:`typing.Callable`, optional):
The initializer of weight, defaults to kaiming uniform initializer.
bias_initializer (:class:`typing.Callable`, optional):
The initializer of bias, defaults to xavier uniform initializer.
position_embed_initializer (:class:`typing.Callable`, optional):
The initializer of position embedding, defaults to zeros initializer.
More details about initializer please refer to
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(self,
img_size: int,
patch_size: int,
in_chans: int,
embed_size: int,
flatten: bool = True,
dtype: torch.dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1),
position_embed_initializer: Callable = init.zeros_()):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.weight = nn.Parameter(
torch.empty((embed_size, in_chans, *self.patch_size), device=get_current_device(), dtype=dtype))
self.bias = nn.Parameter(torch.empty(embed_size, device=get_current_device(), dtype=dtype))
self.cls_token = nn.Parameter(torch.zeros((1, 1, embed_size), device=get_current_device(), dtype=dtype))
self.pos_embed = nn.Parameter(
torch.zeros((1, self.num_patches + 1, embed_size), device=get_current_device(), dtype=dtype))
self.reset_parameters(weight_initializer, bias_initializer, position_embed_initializer)
def reset_parameters(self, weight_initializer, bias_initializer, position_embed_initializer):
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(self.weight)
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
bias_initializer(self.bias, fan_in=fan_in)
position_embed_initializer(self.pos_embed)
def forward(self, input_: Tensor) -> Tensor:
B, C, H, W = input_.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
output = F.conv2d(input_, self.weight, self.bias, stride=self.patch_size)
if self.flatten:
output = output.flatten(2).transpose(1, 2) # BCHW -> BNC
cls_token = self.cls_token.expand(output.shape[0], -1, -1)
output = torch.cat((cls_token, output), dim=1)
output = output + self.pos_embed
return output
@LAYERS.register_module
class VanillaClassifier(nn.Module):
r"""Dense linear classifier.
Args:
in_features (int): size of each input sample.
num_classes (int): number of classes.
weight (:class:`torch.nn.Parameter`, optional): weight of the classifier, defaults to None.
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
flatten (bool, optional): whether to flatten output tensor, defaults to True.
weight_initializer (:class:`typing.Callable`, optional):
The initializer of weight, defaults to kaiming uniform initializer.
bias_initializer (:class:`typing.Callable`, optional):
The initializer of bias, defaults to xavier uniform initializer.
More details about initializer please refer to
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_.
"""
def __init__(self,
in_features: int,
num_classes: int,
weight: nn.Parameter = None,
bias: bool = True,
dtype: torch.dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
super().__init__()
self.in_features = in_features
self.num_classes = num_classes
if weight is not None:
self.weight = weight
self.has_weight = False
else:
self.weight = nn.Parameter(
torch.empty(self.num_classes, self.in_features, device=get_current_device(), dtype=dtype))
self.has_weight = True
if bias:
self.bias = nn.Parameter(torch.zeros(self.num_classes, device=get_current_device(), dtype=dtype))
else:
self.bias = None
self.reset_parameters(weight_initializer, bias_initializer)
def reset_parameters(self, weight_initializer, bias_initializer):
fan_in, fan_out = self.in_features, self.num_classes
if self.has_weight:
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
if self.bias is not None:
bias_initializer(self.bias, fan_in=fan_in)
def forward(self, input_: Tensor) -> Tensor:
return F.linear(input_, self.weight, self.bias)
@LAYERS.register_module
class VanillaLayerNorm(nn.Module):
r"""
Layer Normalization for colossalai
Args:
normalized_shape (int): input shape from an expected input of size.
:math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1]
\times \ldots \times \text{normalized_shape}[-1]]`
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
eps (float): a value added to the denominator for numerical stability, defaults to 1e-05.
bias (bool, optional): Whether to add a bias, defaults to ``True``.
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None.
"""
def __init__(self, normalized_shape: int, eps=1e-05, bias=True, dtype=None):
super().__init__()
self.normalized_shape = (normalized_shape,)
self.variance_epsilon = eps
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
self.weight = nn.Parameter(torch.ones(normalized_shape, **factory_kwargs))
if bias:
self.bias = nn.Parameter(torch.zeros(normalized_shape, **factory_kwargs))
else:
self.bias = None
def forward(self, x: Tensor) -> Tensor:
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.variance_epsilon)