ColossalAI/tests/test_gemini/update/test_optim.py

170 lines
6.6 KiB
Python

from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import colossalai
from colossalai.amp import convert_to_apex_amp
from colossalai.gemini.chunk import ChunkManager, init_chunk_manager, search_chunk_configuration
from colossalai.gemini.gemini_mgr import GeminiManager
from colossalai.nn.optimizer import HybridAdam
from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer
from colossalai.nn.parallel import ZeroDDP
from colossalai.tensor import ColoParameter, ColoTensor
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.utils.cuda import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext, post_process_colo_init_ctx
from tests.components_to_test import run_fwd_bwd
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_tensor.common_utils import debug_print, set_seed
# this model is large enough to slice to chunks
TEST_MODELS = ['gpt2']
# these models are too small, all parameters in these models are compacted into one chunk
EXAMPLE_MODELS = ['albert', 'beit', 'bert', 'hanging_param_model', 'nested_model', 'repeated_computed_layers']
def check_param(model: ZeroDDP, torch_model: torch.nn.Module):
zero_dict = model.state_dict(only_rank_0=False)
torch_dict = torch_model.state_dict()
for key, value in torch_dict.items():
# key is 'module.model.PARAMETER', so we truncate it
key = key[7:]
if key == 'model.lm_head.weight':
continue
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value)))
assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3)
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
@parameterize('model_name', TEST_MODELS)
def exam_model_step(placement_policy, model_name: str):
set_seed(42)
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
torch_model = model_builder().cuda()
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128)
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
init_dev = get_current_device()
with ColoInitContext(device=init_dev):
model = model_builder()
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
p.data.copy_(torch_p.data)
world_size = torch.distributed.get_world_size()
config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
config_dict[world_size]['chunk_size'] = 5000
config_dict[world_size]['keep_gathered'] = False
if placement_policy != 'cuda':
init_device = torch.device('cpu')
else:
init_device = None
chunk_manager = ChunkManager(config_dict, init_device=init_device)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager, pin_memory=True)
optimizer = HybridAdam(model.parameters(), lr=1e-3)
zero_optim = ZeroOptimizer(optimizer, model, initial_scale=128)
model.eval()
torch_model.eval()
set_seed(dist.get_rank() * 3 + 128)
for i, (input_ids, label) in enumerate(train_dataloader):
if i > 2:
break
input_ids, label = input_ids.cuda(), label.cuda()
zero_optim.zero_grad()
torch_optim.zero_grad()
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
assert_close(torch_loss, loss)
zero_optim.step()
torch_optim.step()
check_param(model, torch_model)
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
@parameterize('model_name', EXAMPLE_MODELS)
def exam_tiny_example(placement_policy, model_name: str):
set_seed(2008)
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
torch_model = model_builder().cuda()
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=2)
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
init_dev = get_current_device()
with ColoInitContext(device=init_dev):
model = model_builder()
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
p.data.copy_(torch_p.data)
chunk_manager = init_chunk_manager(model=model, init_device=get_current_device(), search_range_mb=1)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager, pin_memory=True)
optimizer = HybridAdam(model.parameters(), lr=1e-3)
zero_optim = ZeroOptimizer(optimizer, model, initial_scale=2)
model.eval()
torch_model.eval()
set_seed(dist.get_rank() * 3 + 128)
for i, (input_ids, label) in enumerate(train_dataloader):
if i > 2:
break
input_ids = input_ids.cuda()
label = label.cuda()
zero_optim.zero_grad()
torch_optim.zero_grad()
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
assert_close(torch_loss, loss, rtol=1.5e-6, atol=2e-5) # atol should be 2e-5 for torch lower than 1.12
zero_optim.step()
torch_optim.step()
check_param(model, torch_model)
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_model_step()
exam_tiny_example()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_optim(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_optim(1)