mirror of https://github.com/hpcaitech/ColossalAI
222 lines
9.4 KiB
Python
222 lines
9.4 KiB
Python
import os
|
|
import re
|
|
|
|
from setuptools import Extension, find_packages, setup
|
|
|
|
from colossalai.kernel.op_builder.utils import get_cuda_bare_metal_version
|
|
|
|
try:
|
|
import torch
|
|
from torch.utils.cpp_extension import CUDA_HOME, BuildExtension, CUDAExtension
|
|
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
|
|
TORCH_MAJOR = int(torch.__version__.split('.')[0])
|
|
TORCH_MINOR = int(torch.__version__.split('.')[1])
|
|
|
|
if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 10):
|
|
raise RuntimeError("Colossal-AI requires Pytorch 1.10 or newer.\n"
|
|
"The latest stable release can be obtained from https://pytorch.org/")
|
|
except ImportError:
|
|
raise ModuleNotFoundError('torch is not found. You need to install PyTorch before installing Colossal-AI.')
|
|
|
|
# ninja build does not work unless include_dirs are abs path
|
|
this_dir = os.path.dirname(os.path.abspath(__file__))
|
|
build_cuda_ext = True
|
|
ext_modules = []
|
|
|
|
if int(os.environ.get('NO_CUDA_EXT', '0')) == 1:
|
|
build_cuda_ext = False
|
|
|
|
|
|
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
|
|
raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
|
|
torch_binary_major = torch.version.cuda.split(".")[0]
|
|
torch_binary_minor = torch.version.cuda.split(".")[1]
|
|
|
|
print("\nCompiling cuda extensions with")
|
|
print(raw_output + "from " + cuda_dir + "/bin\n")
|
|
|
|
if bare_metal_major != torch_binary_major:
|
|
print(f'The detected CUDA version ({raw_output}) mismatches the version that was used to compile PyTorch '
|
|
f'({torch.version.cuda}). CUDA extension will not be installed.')
|
|
return False
|
|
|
|
if bare_metal_minor != torch_binary_minor:
|
|
print("\nWarning: Cuda extensions are being compiled with a version of Cuda that does "
|
|
"not match the version used to compile Pytorch binaries. "
|
|
f"Pytorch binaries were compiled with Cuda {torch.version.cuda}.\n"
|
|
"In some cases, a minor-version mismatch will not cause later errors: "
|
|
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. ")
|
|
return True
|
|
|
|
|
|
def check_cuda_availability(cuda_dir):
|
|
if not torch.cuda.is_available():
|
|
# https://github.com/NVIDIA/apex/issues/486
|
|
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query
|
|
# torch.cuda.get_device_capability(), which will fail if you are compiling in an environment
|
|
# without visible GPUs (e.g. during an nvidia-docker build command).
|
|
print(
|
|
'\nWarning: Torch did not find available GPUs on this system.\n',
|
|
'If your intention is to cross-compile, this is not an error.\n'
|
|
'By default, Colossal-AI will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n'
|
|
'Volta (compute capability 7.0), Turing (compute capability 7.5),\n'
|
|
'and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n'
|
|
'If you wish to cross-compile for a single specific architecture,\n'
|
|
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n')
|
|
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
|
|
_, bare_metal_major, _ = get_cuda_bare_metal_version(cuda_dir)
|
|
if int(bare_metal_major) == 11:
|
|
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
|
|
else:
|
|
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
|
|
return False
|
|
|
|
if cuda_dir is None:
|
|
print("nvcc was not found. CUDA extension will not be installed. If you're installing within a container from "
|
|
"https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
|
|
return False
|
|
return True
|
|
|
|
|
|
def append_nvcc_threads(nvcc_extra_args):
|
|
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
|
|
if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2:
|
|
return nvcc_extra_args + ["--threads", "4"]
|
|
return nvcc_extra_args
|
|
|
|
|
|
def fetch_requirements(path):
|
|
with open(path, 'r') as fd:
|
|
return [r.strip() for r in fd.readlines()]
|
|
|
|
|
|
def fetch_readme():
|
|
with open('README.md', encoding='utf-8') as f:
|
|
return f.read()
|
|
|
|
|
|
def get_version():
|
|
setup_file_path = os.path.abspath(__file__)
|
|
project_path = os.path.dirname(setup_file_path)
|
|
version_txt_path = os.path.join(project_path, 'version.txt')
|
|
version_py_path = os.path.join(project_path, 'colossalai/version.py')
|
|
|
|
with open(version_txt_path) as f:
|
|
version = f.read().strip()
|
|
if build_cuda_ext:
|
|
torch_version = '.'.join(torch.__version__.split('.')[:2])
|
|
cuda_version = '.'.join(get_cuda_bare_metal_version(CUDA_HOME)[1:])
|
|
version += f'+torch{torch_version}cu{cuda_version}'
|
|
|
|
# write version into version.py
|
|
with open(version_py_path, 'w') as f:
|
|
f.write(f"__version__ = '{version}'\n")
|
|
|
|
return version
|
|
|
|
|
|
if build_cuda_ext:
|
|
build_cuda_ext = check_cuda_availability(CUDA_HOME) and check_cuda_torch_binary_vs_bare_metal(CUDA_HOME)
|
|
|
|
if build_cuda_ext:
|
|
# Set up macros for forward/backward compatibility hack around
|
|
# https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e
|
|
# and
|
|
# https://github.com/NVIDIA/apex/issues/456
|
|
# https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac
|
|
version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5']
|
|
|
|
def cuda_ext_helper(name, sources, extra_cuda_flags, extra_cxx_flags=[]):
|
|
return CUDAExtension(
|
|
name=name,
|
|
sources=[os.path.join('colossalai/kernel/cuda_native/csrc', path) for path in sources],
|
|
include_dirs=[os.path.join(this_dir, 'colossalai/kernel/cuda_native/csrc/kernels/include')],
|
|
extra_compile_args={
|
|
'cxx': ['-O3'] + version_dependent_macros + extra_cxx_flags,
|
|
'nvcc': append_nvcc_threads(['-O3', '--use_fast_math'] + version_dependent_macros + extra_cuda_flags)
|
|
})
|
|
|
|
#### fused optim kernels ###
|
|
from colossalai.kernel.op_builder import FusedOptimBuilder
|
|
ext_modules.append(FusedOptimBuilder().builder('colossalai._C.fused_optim'))
|
|
|
|
#### N-D parallel kernels ###
|
|
cc_flag = []
|
|
for arch in torch.cuda.get_arch_list():
|
|
res = re.search(r'sm_(\d+)', arch)
|
|
if res:
|
|
arch_cap = res[1]
|
|
if int(arch_cap) >= 60:
|
|
cc_flag.extend(['-gencode', f'arch=compute_{arch_cap},code={arch}'])
|
|
|
|
extra_cuda_flags = [
|
|
'-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '--expt-relaxed-constexpr',
|
|
'--expt-extended-lambda'
|
|
]
|
|
|
|
from colossalai.kernel.op_builder import ScaledSoftmaxBuilder
|
|
ext_modules.append(ScaledSoftmaxBuilder().builder('colossalai._C.scaled_upper_triang_masked_softmax'))
|
|
|
|
ext_modules.append(
|
|
cuda_ext_helper('colossalai._C.scaled_masked_softmax',
|
|
['scaled_masked_softmax.cpp', 'scaled_masked_softmax_cuda.cu'], extra_cuda_flags + cc_flag))
|
|
|
|
ext_modules.append(
|
|
cuda_ext_helper('colossalai._C.moe', ['moe_cuda.cpp', 'moe_cuda_kernel.cu'], extra_cuda_flags + cc_flag))
|
|
|
|
extra_cuda_flags = ['-maxrregcount=50']
|
|
|
|
ext_modules.append(
|
|
cuda_ext_helper('colossalai._C.layer_norm', ['layer_norm_cuda.cpp', 'layer_norm_cuda_kernel.cu'],
|
|
extra_cuda_flags + cc_flag))
|
|
|
|
### MultiHeadAttn Kernel ####
|
|
from colossalai.kernel.op_builder import MultiHeadAttnBuilder
|
|
ext_modules.append(MultiHeadAttnBuilder().builder('colossalai._C.multihead_attention'))
|
|
|
|
### Gemini Adam kernel ####
|
|
from colossalai.kernel.op_builder import CPUAdamBuilder
|
|
ext_modules.append(CPUAdamBuilder().builder('colossalai._C.cpu_optim'))
|
|
|
|
setup(name='colossalai',
|
|
version=get_version(),
|
|
packages=find_packages(exclude=(
|
|
'benchmark',
|
|
'docker',
|
|
'tests',
|
|
'docs',
|
|
'examples',
|
|
'tests',
|
|
'scripts',
|
|
'requirements',
|
|
'*.egg-info',
|
|
)),
|
|
description='An integrated large-scale model training system with efficient parallelization techniques',
|
|
long_description=fetch_readme(),
|
|
long_description_content_type='text/markdown',
|
|
license='Apache Software License 2.0',
|
|
url='https://www.colossalai.org',
|
|
project_urls={
|
|
'Forum': 'https://github.com/hpcaitech/ColossalAI/discussions',
|
|
'Bug Tracker': 'https://github.com/hpcaitech/ColossalAI/issues',
|
|
'Examples': 'https://github.com/hpcaitech/ColossalAI-Examples',
|
|
'Documentation': 'http://colossalai.readthedocs.io',
|
|
'Github': 'https://github.com/hpcaitech/ColossalAI',
|
|
},
|
|
ext_modules=ext_modules,
|
|
cmdclass={'build_ext': BuildExtension} if ext_modules else {},
|
|
install_requires=fetch_requirements('requirements/requirements.txt'),
|
|
entry_points='''
|
|
[console_scripts]
|
|
colossalai=colossalai.cli:cli
|
|
''',
|
|
python_requires='>=3.6',
|
|
classifiers=[
|
|
'Programming Language :: Python :: 3',
|
|
'License :: OSI Approved :: Apache Software License',
|
|
'Environment :: GPU :: NVIDIA CUDA',
|
|
'Topic :: Scientific/Engineering :: Artificial Intelligence',
|
|
'Topic :: System :: Distributed Computing',
|
|
],
|
|
package_data={'colossalai': ['_C/*.pyi']})
|