mirror of https://github.com/hpcaitech/ColossalAI
313 lines
14 KiB
Python
313 lines
14 KiB
Python
from functools import partial
|
|
from typing import Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from torch.nn import Module
|
|
|
|
import colossalai.shardformer.layer as col_nn
|
|
|
|
from ..modeling.bloom import BloomPipelineForwards, build_bloom_alibi_tensor_fn
|
|
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
|
|
class BloomPolicy(Policy):
|
|
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
# reshape the embedding layer
|
|
r"""
|
|
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
|
"""
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
vocab_size = self.model.config.vocab_size
|
|
world_size = self.shard_config.tensor_parallel_size
|
|
if vocab_size % world_size != 0:
|
|
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
|
self.model.resize_token_embeddings(new_vocab_size)
|
|
return self.model
|
|
|
|
def module_policy(self):
|
|
from transformers.models.bloom.modeling_bloom import BloomBlock, BloomModel
|
|
|
|
policy = {}
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
policy[BloomBlock] = ModulePolicyDescription(attribute_replacement={
|
|
"self_attention.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"self_attention.split_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"self_attention.num_heads": self.model.config.n_head // self.shard_config.tensor_parallel_size,
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attention.query_key_value",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attention.dense",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attention.attention_dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.dense_h_to_4h",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.dense_4h_to_h",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
])
|
|
|
|
policy[BloomModel] = ModulePolicyDescription(
|
|
attribute_replacement={
|
|
"num_heads": self.model.config.n_head // self.shard_config.tensor_parallel_size,
|
|
},
|
|
method_replacement={
|
|
"build_alibi_tensor": build_bloom_alibi_tensor_fn(self.shard_config.tensor_parallel_process_group)
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="word_embeddings",
|
|
target_module=col_nn.VocabParallelEmbedding1D,
|
|
)
|
|
])
|
|
|
|
# optimization configuration
|
|
if self.shard_config.enable_fused_normalization:
|
|
# handle bloom model
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="ln_f",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="word_embeddings_layernorm",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
)
|
|
],
|
|
policy=policy,
|
|
target_key=BloomModel)
|
|
|
|
# handle bloom block
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="input_layernorm",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="post_attention_layernorm",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
)
|
|
],
|
|
policy=policy,
|
|
target_key=BloomBlock)
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
|
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
|
to customized forward method, and add this changing to policy."""
|
|
if self.pipeline_stage_manager:
|
|
stage_manager = self.pipeline_stage_manager
|
|
if self.model.__class__.__name__ == "BloomModel":
|
|
module = self.model
|
|
else:
|
|
module = self.model.transformer
|
|
|
|
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
|
|
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
|
method_replacement = {'forward': partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
|
|
self.append_or_create_method_replacement(description=method_replacement,
|
|
policy=policy,
|
|
target_key=model_cls)
|
|
return
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
assert self.pipeline_stage_manager is not None
|
|
|
|
if self.model.__class__.__name__ == 'BloomModel':
|
|
module = self.model
|
|
else:
|
|
module = self.model.transformer
|
|
stage_manager = self.pipeline_stage_manager
|
|
|
|
held_layers = []
|
|
layers_per_stage = self.distribute_layers(len(module.h), stage_manager.num_stages)
|
|
if stage_manager.is_first_stage():
|
|
held_layers.append(module.word_embeddings)
|
|
held_layers.append(module.word_embeddings_layernorm)
|
|
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
|
held_layers.extend(module.h[start_idx:end_idx])
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(module.ln_f)
|
|
|
|
return held_layers
|
|
|
|
|
|
class BloomModelPolicy(BloomPolicy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
policy = super().module_policy()
|
|
from transformers.models.bloom.modeling_bloom import BloomModel
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(model_cls=BloomModel,
|
|
new_forward=BloomPipelineForwards.bloom_model_forward,
|
|
policy=policy)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""
|
|
get pipeline layers for current stage
|
|
"""
|
|
held_layers = super().get_held_layers()
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
'''no shared params in bloom model'''
|
|
return []
|
|
|
|
|
|
class BloomForCausalLMPolicy(BloomPolicy):
|
|
|
|
def module_policy(self):
|
|
from transformers.models.bloom.modeling_bloom import BloomForCausalLM
|
|
policy = super().module_policy()
|
|
|
|
# handle tensor parallelism
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
|
|
suffix="lm_head", target_module=col_nn.Linear1D_Col, kwargs=dict(gather_output=True)),
|
|
policy=policy,
|
|
target_key=BloomForCausalLM)
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(model_cls=BloomForCausalLM,
|
|
new_forward=BloomPipelineForwards.bloom_for_causal_lm_forward,
|
|
policy=policy)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(self.model.lm_head)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
bloom_model = self.model
|
|
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
|
|
if id(bloom_model.transformer.word_embeddings.weight) == id(bloom_model.lm_head.weight):
|
|
# tie weights
|
|
return [{
|
|
0: bloom_model.transformer.word_embeddings.weight,
|
|
self.pipeline_stage_manager.num_stages - 1: bloom_model.lm_head.weight
|
|
}]
|
|
return []
|
|
|
|
|
|
class BloomForSequenceClassificationPolicy(BloomPolicy):
|
|
|
|
def module_policy(self):
|
|
from transformers.models.bloom.modeling_bloom import BloomForSequenceClassification
|
|
policy = super().module_policy()
|
|
|
|
# handle tensor parallelism
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
|
|
suffix="score", target_module=col_nn.Linear1D_Col, kwargs=dict(gather_output=True)),
|
|
policy=policy,
|
|
target_key=BloomForSequenceClassification)
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(model_cls=BloomForSequenceClassification,
|
|
new_forward=BloomPipelineForwards.bloom_for_sequence_classification_forward,
|
|
policy=policy)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(self.model.score)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in bloom for sequence classification model"""
|
|
return []
|
|
|
|
|
|
class BloomForTokenClassificationPolicy(BloomPolicy):
|
|
|
|
def module_policy(self):
|
|
from transformers.models.bloom.modeling_bloom import BloomForTokenClassification
|
|
policy = super().module_policy()
|
|
|
|
# handle tensor parallelism
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(suffix="classifier",
|
|
target_module=col_nn.Linear1D_Col,
|
|
kwargs=dict(gather_output=True)),
|
|
SubModuleReplacementDescription(
|
|
suffix="dropout",
|
|
target_module=col_nn.DropoutForReplicatedInput,
|
|
),
|
|
],
|
|
policy=policy,
|
|
target_key=BloomForTokenClassification)
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(model_cls=BloomForTokenClassification,
|
|
new_forward=BloomPipelineForwards.bloom_for_token_classification_forward,
|
|
policy=policy)
|
|
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(self.model.dropout)
|
|
held_layers.append(self.model.classifier)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in bloom for token classification model"""
|
|
return []
|
|
|
|
|
|
class BloomForQuestionAnsweringPolicy(BloomPolicy):
|
|
# No head sharding as the output features is only 2
|
|
def module_policy(self):
|
|
from transformers.models.bloom.modeling_bloom import BloomForQuestionAnswering
|
|
policy = super().module_policy()
|
|
if self.pipeline_stage_manager:
|
|
self.set_pipeline_forward(model_cls=BloomForQuestionAnswering,
|
|
new_forward=BloomPipelineForwards.bloom_for_question_answering_forward,
|
|
policy=policy)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
held_layers = super().get_held_layers()
|
|
stage_manager = self.pipeline_stage_manager
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(self.model.qa_outputs)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in bloom for question answering model"""
|
|
return []
|