ColossalAI/colossalai/nn/optimizer/distributed_galore.py

280 lines
12 KiB
Python

""" adapted from https://github.com/jiaweizzhao/GaLore/blob/master/galore_torch/adamw8bit.py"""
import warnings
from collections import defaultdict
from typing import Dict, Optional
import torch
import torch.distributed as dist
import torch.nn.functional as F
from bitsandbytes.optim.optimizer import Optimizer2State
from colossalai.interface.optimizer import DistributedOptim
from colossalai.tensor.d_tensor import get_shard_dim_1d, is_distributed_tensor
from .galore import GaLoreProjector, make_low_rank_buffer
__all__ = ["DistributedGalore"]
# Mark sharded dimension
class DistGaloreAwamW(DistributedOptim, Optimizer2State):
r"""Implements Galore, a optimizer-agonistic gradient compression technique on 8-bit AdamW.
It largely compresses gradient via low-rank projection and is claimed to be insensitive to hyperparams like lr.
Supports Tensor Parallel and ZeRO stage 1 and 2 via booster and plugin.
Proposed in `GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection`
https://arxiv.org/abs/2403.03507
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its norm. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-6)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0.01)
nbits: Number of bits for quantization optim states. Only 32 and 8 are supported.
min_8bit_size (`int`, defaults to 4096):
The minimum number of elements of the parameter tensors for 8-bit optimization.
percentile_clipping (`int`, defaults to 100):
Adapts clipping threshold automatically by tracking the last 100 gradient norms and clipping the gradient at a certain percentile to improve stability.
block_wise (`bool`, defaults to `True`):
Whether to independently quantize each block of tensors to reduce outlier effects and improve stability.
is_paged (`bool`, defaults to `False`):
Whether the optimizer is a paged optimizer (handle memory spike via CPU-GPU transfer) or not.
"""
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
nbits=8,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
is_paged=False,
):
super().__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
nbits,
None,
min_8bit_size,
percentile_clipping,
block_wise,
is_paged=is_paged,
)
self.tp_size = 1
self.dp_size = 1
self.is_dist = {}
proj_none = all(["rank" not in group for group in self.param_groups])
if proj_none:
warnings.warn(
"Will not apply GaLore as rank isn't in any param group. If you forgot to, try get_galore_param_groups"
)
# Default from the paper
for group in self.param_groups:
if "rank" in group:
group["update_proj_gap"] = group.get("update_proj_gap", 200)
group["proj_type"] = group.get("proj_type", "std")
group["scale"] = group.get("scale", 0.25)
def setup_distributed(
self,
tp_group: Optional[dist.ProcessGroup] = None,
dp_group: Optional[dist.ProcessGroup] = None,
shard_to_working_param: Optional[Dict] = {},
padding_map: Optional[Dict] = defaultdict(int),
is_zero: Optional[bool] = False,
):
"""Setup process groups for TP and ZeRO 2.
Arguments:
tp_group (dist.ProcessGroup): Tensor Parallel process group
dp_group (dist.ProcessGroup): ZeRO 2 process group
shard_to_working_param (Dict): ZeRO 2 feeds the optimizer a sharded param view as grads are sharded.
This maps from id(view) to working params used in forward & backward.
padding_map (Dict): Padding size of each param from ZeRO's param store. Required if ZeRO is used.
is_zero (bool): Whether to use ZeRO 2.
"""
assert dist.is_initialized(), "You forgot to initialized distributed backend..."
self.tp_group = tp_group
self.dp_group = dp_group
if tp_group is not None:
self.tp_size = dist.get_world_size(tp_group)
if dp_group is not None:
self.dp_size = dist.get_world_size(dp_group)
self.shard_to_working_param = shard_to_working_param if shard_to_working_param is not None else {}
self.is_zero = is_zero and self.dp_size > 1
self.padding_map = padding_map if padding_map is not None else defaultdict(int)
if is_zero:
assert self.padding_map is not defaultdict(
int
), "We can't do SVD without knowing ZeRO's per-param padding size"
self.distributed_on = self.tp_size > 0 or self.dp_size > 0
# Cache working param layout
self.shard_dim = {}
for group in self.param_groups:
for p in group["params"]:
# w/o ZeRO: master param = working param
self.shard_to_working_param[id(p)] = self.shard_to_working_param.get(id(p), p)
if id(p) not in self.padding_map:
self.padding_map[id(p)] = 0
self.is_dist[id(p)] = is_distributed_tensor(self.shard_to_working_param[id(p)])
if is_distributed_tensor(self.shard_to_working_param[id(p)]):
self.shard_dim[id(p)] = get_shard_dim_1d(self.shard_to_working_param[id(p)])
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
if not self.initialized:
self.check_overrides()
self.to_gpu()
self.initialized = True
for gindex, group in enumerate(self.param_groups):
for pindex, p in enumerate(group["params"]):
if p.grad is None:
continue
state = self.state[p]
if "step" not in state:
state["step"] = 0
# GaLore Projection
if "rank" in group:
if "projector" not in state:
state["projector"] = GaLoreProjector(
group["rank"],
scale=group["scale"],
update_proj_gap=group["update_proj_gap"],
proj_type=group["proj_type"],
)
# decoupled weight decay
if "weight_decay" in group and group["weight_decay"] > 0:
group["weight_decay_saved"] = group["weight_decay"]
group["weight_decay"] = 0
grad = p.grad
working_shape = list(self.shard_to_working_param[id(p)].shape)
padding = self.padding_map[id(p)]
# All-gather grads for projection step
if self.distributed_on:
# Gather for ZeRO 1 & 2 implementation don't retain full grads
if self.is_zero:
# (m, n).flatten().chunk(dp_size) equals to (m / dp_size, n).flatten()
working_shape[0] //= self.dp_size
# Gather grads for projection
if state["step"] % group["update_proj_gap"] == 0:
all_grads = [
torch.empty_like(grad, dtype=p.grad.dtype, device=p.grad.device)
for _ in range(self.dp_size)
]
dist.all_gather(all_grads, grad, self.dp_group)
grad = torch.cat(all_grads)
# To working param shape
if padding > 0:
grad = grad[:-padding]
working_shape[0] *= self.dp_size
grad = grad.reshape(working_shape) # unflatten
# Gather TP grads
if self.is_dist[id(p)] and state["step"] % group["update_proj_gap"] == 0:
all_grads = [
torch.empty_like(grad, dtype=p.grad.dtype, device=p.grad.device)
for _ in range(self.tp_size)
]
dist.all_gather(all_grads, grad.contiguous(), self.tp_group)
grad = torch.cat(all_grads, dim=self.shard_dim[id(p)])
# Compute SVD. Will use a subset of singular vectors when grads are sharded.
grad = state["projector"].project(grad, state["step"])
# Re-shard gathered grads after SVD
if self.distributed_on and state["step"] % group["update_proj_gap"] == 0:
# TP
if self.is_dist[id(p)]:
grad = grad.chunk(self.tp_size, dim=self.shard_dim[id(p)])[dist.get_rank(self.tp_group)]
# ZeRO
# TODO: this might not work with padding, e.g. (3, 3) with dp size 2
# Need extra logic in ZeRO to pad nRows/nCols to be divisible by dp_size
if self.is_zero:
grad = grad.chunk(self.dp_size)[dist.get_rank(self.dp_group)]
grad = grad.contiguous() # avoid bitsandbytes update error
working_shape = grad.shape
# To flattended master param shape
grad = self.to_master_shape(grad, padding)
make_low_rank_buffer(p, grad)
if "state1" not in state:
self.init_state(group, p, gindex, pindex)
self.prefetch_state(p)
self.update_step(group, p, gindex, pindex)
torch.cuda.synchronize()
# Project Back to working param shape
if "rank" in group:
# Unpad
if self.is_zero:
if padding > 0:
p.data = p.data[:-padding]
p.data = p.data.reshape(working_shape)
p.data = state["projector"].project_back(p.data)
# Re-flatten grads for ZeRO
p.data = self.to_master_shape(p.data, padding)
p.data = p.saved_data.add_(p.data)
# apply decoupled weight decay
if "weight_decay_saved" in group:
p.data.add_(p.data, alpha=-group["lr"] * group["weight_decay_saved"])
group["weight_decay"] = group["weight_decay_saved"]
del group["weight_decay_saved"]
if self.is_paged:
# all paged operation are asynchronous, we need
# to sync to make sure all tensors are in the right state
torch.cuda.synchronize()
return loss
def to_master_shape(self, data, padding):
"""Pad to master (optimizer) param shape"""
if not self.is_zero:
return data
data = data.view(-1)
if padding > 0:
data = F.pad(data, [0, padding])
return data
def __del__(self):
"""Avoid buffer memory leak"""
for group in self.param_groups:
for p in group["params"]:
if hasattr(p, "saved_data"):
del p.saved_data