ColossalAI/colossalai/nn/optimizer/distributed_adafactor.py

441 lines
21 KiB
Python

import math
from typing import Dict
import torch
import torch.distributed as dist
from colossalai.interface.optimizer import DistributedOptim
from colossalai.shardformer.layer._operation import _gather, _split
from colossalai.tensor.d_tensor import get_sharding_spec, is_distributed_tensor
# DistributedAdaFactor (with Tensor parallel and Zero stage 2)
__all__ = ["DistributedAdaFactor"]
class DistributedAdaFactor(DistributedOptim):
def __init__(
self,
params,
lr=None,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
scale_parameter=True,
relative_step=True,
warmup_init=False,
):
lr = None
if lr is not None and relative_step:
raise ValueError("Cannot combine manual `lr` and `relative_step=True` options")
if warmup_init and not relative_step:
raise ValueError("`warmup_init=True` requires `relative_step=True`")
defaults = {
"lr": lr,
"eps": eps,
"clip_threshold": clip_threshold,
"decay_rate": decay_rate,
"beta1": beta1,
"weight_decay": weight_decay,
"scale_parameter": scale_parameter,
"relative_step": relative_step,
"warmup_init": warmup_init,
}
self.tp_size = 1
self.tp_group = None
self.dp_size = 1
self.dp_group = None
self.shard_to_working_param = None # Dict{id:shape}, sample {id(param): torch.tensor}
self.use_zero = True
self.param_is_dtensor_dict = {} # {id(p): True/False}
self.grad_shape_dict = {} # {id(p): master param shape}
self.factored_dict = {} # {id(p): True/False}
self.use_first_moment_dict = {} # {id(p): True/False}
self.shard_spec_dict = {} # {id(p): ShardSpec}
super().__init__(params, defaults)
def setup_distributed(
self,
tp_group: dist.ProcessGroup = None,
dp_group: dist.ProcessGroup = None,
shard_to_working_param: Dict = {},
padding_map=None,
use_zero: bool = True,
) -> None:
"""Setup process groups for TP and ZeRO 2.
Inject features to the Optimizer
Args:
tp_group: The devices group for tensor parallel;
dp_group: The devices group for data parallel;
shard_to_working_param (Dict): ZeRO 2 feeds the optimizer a sharded param view as grads are sharded.
This maps from id(view) to working params used in forward & backward.
padding_map: An empty interface placeholder;
use_zero: Whether or not to use zero;
"""
self.tp_group = tp_group # "Expected row process group"
self.dp_group = dp_group
if self.tp_group is not None:
self.tp_size = dist.get_world_size(self.tp_group)
if self.dp_group is not None:
self.dp_size = dist.get_world_size(self.dp_group)
self.use_zero = use_zero
self.shard_to_working_param = shard_to_working_param if shard_to_working_param is not None else {}
# grad is None, cause we dont setup now
for group in self.param_groups:
for p in group["params"]:
self.shard_to_working_param[id(p)] = self.shard_to_working_param.get(
id(p), p
) # If not ZeRO, working param is master param
self.param_is_dtensor_dict[id(p)] = is_distributed_tensor(self.shard_to_working_param[id(p)])
self.grad_shape_dict[id(p)] = self.shard_to_working_param.get(id(p)).shape
self.factored_dict[id(p)], self.use_first_moment_dict[id(p)] = self._get_options(
group, self.grad_shape_dict[id(p)]
)
if self.param_is_dtensor_dict[id(p)]:
self.shard_spec_dict[id(p)] = get_sharding_spec(self.shard_to_working_param[id(p)])
else:
self.shard_spec_dict[id(p)] = None
@staticmethod
def _get_lr(param_group, param_state):
rel_step_sz = param_group["lr"]
if param_group["relative_step"]:
min_step = 1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
param_scale = 1.0
if param_group["scale_parameter"]:
param_scale = max(param_group["eps"][1], param_state["RMS"])
return param_scale * rel_step_sz
@staticmethod
def _get_options(param_group, param_shape):
"""
Determines whether the current param is factored
Args:
param_group : param group
param_shape : Original Shape of param
"""
factored = len(param_shape) >= 2
use_first_moment = param_group["beta1"] is not None
return factored, use_first_moment
@staticmethod
def _rms(tensor, param_is_dtensor, use_zero, tp_size, dp_size, tp_group, dp_group):
tensor_sum = tensor.pow(2).sum()
num_of_element = tensor.numel()
if param_is_dtensor:
# reduce tensor_sum from tp_group
dist.all_reduce(tensor_sum, group=tp_group)
num_of_element = num_of_element * tp_size
if use_zero:
dist.all_reduce(tensor_sum, group=dp_group)
num_of_element = num_of_element * dp_size
rms = (tensor_sum / num_of_element).sqrt()
return rms
@staticmethod
def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
# approx_sq_grad for row parallel weight
@staticmethod
def _approx_sq_grad_row_parallel(exp_avg_sq_row, exp_avg_sq_col, sq_row_meam):
# row_meam = sq_row_meam
r_factor = (exp_avg_sq_row / sq_row_meam).rsqrt_().unsqueeze(-1)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
def _col_parallel_factor(self, update, grad, state, grad_shape, beta2t):
if grad_shape[0] % self.dp_size != 0:
# gather update[flatten] along dp group then reshape to [H, W/tp]
update = _gather(input_=update, dim=-1, process_group=self.dp_group)
update_reshape = update.view(-1, grad_shape[1])
# gather grad[flatten] along dp group then reshape to [H, W/tp]
grad = _gather(input_=grad, dim=-1, process_group=self.dp_group)
grad_reshape = grad.view(-1, grad_shape[1])
exp_avg_sq_row = state["exp_avg_sq_row"] # [H]
exp_avg_sq_col = state["exp_avg_sq_col"] # [W/tp]
exp_avg_sq_row.mul_(beta2t).add_(update_reshape.mean(dim=-1), alpha=(1.0 - beta2t))
exp_avg_sq_col.mul_(beta2t).add_(update_reshape.mean(dim=-2), alpha=(1.0 - beta2t))
update_reshape = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update_reshape.mul_(grad_reshape)
else:
update_reshape = update.view(-1, grad_shape[1])
grad_reshape = grad.view(-1, grad_shape[1])
exp_avg_sq_row = state["exp_avg_sq_row"] # [H/dp]
exp_avg_sq_col = state["exp_avg_sq_col"] # [W/tp]
exp_avg_sq_row.mul_(beta2t).add_(update_reshape.mean(dim=-1), alpha=(1.0 - beta2t))
exp_avg_sq_col.mul_(beta2t).add_(update_reshape.mean(dim=-2), alpha=(1.0 - beta2t))
dist.all_reduce(exp_avg_sq_row, group=self.tp_group)
exp_avg_sq_row.div_(self.tp_size)
update_reshape = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update_reshape.mul_(grad_reshape)
if self.use_zero:
update = update_reshape.view(-1)
else:
update = update_reshape
return update
def _row_parallel_factor(self, update, grad, state, grad_shape, beta2t):
if grad_shape[0] % self.dp_size != 0:
# gather update[flatten] along dp group then reshape to [H/tp, W]
update = _gather(input_=update, dim=-1, process_group=self.dp_group)
# view update to origin[tp] shape
update_reshape = update.view(-1, grad_shape[1])
# gather grad[flatten] along dp group then reshape to [H/tp, W]
grad = _gather(input_=grad, dim=-1, process_group=self.dp_group)
grad_reshape = grad.view(-1, grad_shape[1])
exp_avg_sq_row = state["exp_avg_sq_row"] # [H/tp]
exp_avg_sq_col = state["exp_avg_sq_col"] # [W]
exp_avg_sq_row.mul_(beta2t).add_(update_reshape.mean(dim=-1), alpha=(1.0 - beta2t))
exp_avg_sq_col.mul_(beta2t).add_(update_reshape.mean(dim=-2), alpha=(1.0 - beta2t))
# reduce col
dist.all_reduce(exp_avg_sq_col, group=self.tp_group)
exp_avg_sq_col.div_(self.tp_size)
update_reshape = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update_reshape.mul_(grad_reshape)
if self.use_zero:
update = _split(input_=update_reshape.view(-1), dim=-1, process_group=self.dp_group)
else:
update = update_reshape
else:
update_reshape = update.view(-1, grad_shape[1])
grad_reshape = grad.view(-1, grad_shape[1])
exp_avg_sq_row = state["exp_avg_sq_row"] # [H/dp/tp]
exp_avg_sq_col = state["exp_avg_sq_col"] # [W]
exp_avg_sq_row.mul_(beta2t).add_(update_reshape.mean(dim=-1), alpha=(1.0 - beta2t))
exp_avg_sq_col.mul_(beta2t).add_(update_reshape.mean(dim=-2), alpha=(1.0 - beta2t))
# reduce col
dist.all_reduce(exp_avg_sq_col, group=self.tp_group)
exp_avg_sq_col.div_(self.tp_size)
# gather row
exp_avg_sq_row_gather = _gather(input_=exp_avg_sq_row, dim=-1, process_group=self.tp_group)
sq_row_meam = exp_avg_sq_row_gather.mean(dim=-1, keepdim=True)
update_reshape = self._approx_sq_grad_row_parallel(exp_avg_sq_row, exp_avg_sq_col, sq_row_meam)
update_reshape.mul_(grad_reshape)
if self.use_zero:
update = update_reshape.view(-1)
else:
update = update_reshape
return update
def _base_factor(self, update, grad, state, grad_shape, beta2t):
if self.use_zero:
# only zero
if grad_shape[0] % self.dp_size != 0:
# view update to origin shape update.view(grad_shape[0]//self.data_parallel_size , grad_shape[1])
# row mean no change
# col mean need reduce and div
# gather update[flatten] along dp group then reshape to [H, W]
update = _gather(input_=update, dim=-1, process_group=self.dp_group)
# view update to origin[tp] shape
update_reshape = update.view(-1, grad_shape[1])
# gather grad[flatten] along dp group then reshape to [H, W]
grad = _gather(input_=grad, dim=-1, process_group=self.dp_group)
grad_reshape = grad.view(-1, grad_shape[1])
exp_avg_sq_row = state["exp_avg_sq_row"] # [H/dp]
exp_avg_sq_col = state["exp_avg_sq_col"] # [W]
exp_avg_sq_row.mul_(beta2t).add_(update_reshape.mean(dim=-1), alpha=(1.0 - beta2t))
exp_avg_sq_col.mul_(beta2t).add_(update_reshape.mean(dim=-2), alpha=(1.0 - beta2t))
# reduce col
dist.all_reduce(exp_avg_sq_col, group=self.tp_group)
exp_avg_sq_col.div_(self.tp_size)
update_reshape = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update_reshape.mul_(grad_reshape)
update = _split(input_=update_reshape.view(-1), dim=-1, process_group=self.dp_group)
else:
# no residual row
# view update to origin[tp] shape
update_reshape = update.view(-1, grad_shape[1]) # [H/dp, W]
grad_reshape = grad.view(-1, grad_shape[1]) # [H/dp, W]
exp_avg_sq_row = state["exp_avg_sq_row"] # [H/tp]
exp_avg_sq_col = state["exp_avg_sq_col"] # [W]
exp_avg_sq_row.mul_(beta2t).add_(update_reshape.mean(dim=-1), alpha=(1.0 - beta2t))
exp_avg_sq_col.mul_(beta2t).add_(update_reshape.mean(dim=-2), alpha=(1.0 - beta2t))
# reduce col
dist.all_reduce(exp_avg_sq_col, group=self.tp_group)
exp_avg_sq_col.div_(self.tp_size)
update_reshape = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update_reshape.mul_(grad_reshape)
update = update_reshape.view(-1)
else:
# base factor; no tp, no dp
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
# Exponential average of row indexes
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t))
# Exponential average of columns indexes
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t))
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
return update
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization steps
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
"""
param_groups: Dict
{
"params":[weight, bias]
"lr"
"eps"
"clip_threshold"
"decay_rate"
"beta1"
"weight_decay"
"scale_parameter"
"relative_step"
"warmup_init"
}
"""
for group in self.param_groups:
# update weight & bias
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad
if grad.is_sparse:
raise RuntimeError("Adafactor does not support sparse gradients.")
state = self.state[p]
grad_shape = self.grad_shape_dict[id(p)]
param_is_dtensor = self.param_is_dtensor_dict[id(p)]
if param_is_dtensor:
grad_shape = self.shard_to_working_param.get(id(p)).shape # tp shape (2 dim)
factored, use_first_moment = self.factored_dict[id(p)], self.use_first_moment_dict[id(p)]
shard_spec = self.shard_spec_dict[id(p)]
if len(state) == 0:
state["step"] = 0
if use_first_moment:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p)
if factored:
if param_is_dtensor:
if shard_spec.sharding_sequence[0] == "R": # Col Parallel
if grad_shape[0] % self.dp_size != 0:
state["exp_avg_sq_row"] = torch.zeros(
grad_shape[0], device=p.device, dtype=p.dtype
) # [H]
else:
state["exp_avg_sq_row"] = torch.zeros(
grad_shape[0] // self.dp_size, device=p.device, dtype=p.dtype
) # [H/dp]
state["exp_avg_sq_col"] = torch.zeros(
grad_shape[1], device=p.device, dtype=p.dtype
) # [W/TP]
if shard_spec.sharding_sequence[-1] == "R": # Row Parallel
# Row indivisible shape situation
if grad_shape[0] % self.dp_size != 0:
state["exp_avg_sq_row"] = torch.zeros(
grad_shape[0], device=p.device, dtype=p.dtype
) # [H/tp]
else:
state["exp_avg_sq_row"] = torch.zeros(
grad_shape[0] // self.dp_size, device=p.device, dtype=p.dtype
) # [H/dp/tp]
state["exp_avg_sq_col"] = torch.zeros(
grad_shape[1], device=p.device, dtype=p.dtype
) # [W]
else:
if self.use_zero:
if grad_shape[0] % self.dp_size != 0:
# save all exp_avg_sq_row [H]
state["exp_avg_sq_row"] = torch.zeros(
grad_shape[0], device=grad.device, dtype=p.dtype
)
else:
# exp_avg_sq_row [H // dp]
state["exp_avg_sq_row"] = torch.zeros(
grad_shape[0] // self.dp_size, device=grad.device, dtype=p.dtype
)
else:
# exp_avg_sq_row [H]
state["exp_avg_sq_row"] = torch.zeros(grad_shape[0], device=grad.device, dtype=p.dtype)
# exp_avg_sq_col alaways [W]
state["exp_avg_sq_col"] = torch.zeros(grad_shape[1], device=grad.device, dtype=p.dtype)
else:
state["exp_avg_sq"] = torch.zeros_like(p)
state["RMS"] = 0
else:
if use_first_moment:
state["exp_avg"] = state["exp_avg"]
if factored:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"]
state["exp_avg_sq_col"] = state["exp_avg_sq_col"]
else:
state["exp_avg_sq"] = state["exp_avg_sq"]
state["step"] += 1
lr = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
update = (grad**2) + group["eps"][0]
if factored:
if param_is_dtensor:
# ==============================
# First Dim is R, Last Dim is S{} means split dim -1 --->
# Coloum Parallel ---> sq_row need Do (col) Reduce
# ==============================
if shard_spec.sharding_sequence[0] == "R":
update = self._col_parallel_factor(update, grad, state, grad_shape, beta2t)
# ==============================
# Last Dim is R, First Dim is S{} means split dim 0 --->
# Row Parallel ---> sq_col need Do (row) Reduce
# ==============================
elif shard_spec.sharding_sequence[-1] == "R":
update = self._row_parallel_factor(update, grad, state, grad_shape, beta2t)
else:
update = self._base_factor(update, grad, state, grad_shape, beta2t)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
update = exp_avg_sq.rsqrt().mul_(grad)
# # (Line No.8) RMS
rms = self._rms(
update,
param_is_dtensor,
self.use_zero,
self.tp_size,
self.dp_size,
self.tp_group,
self.dp_group,
)
update.div_((rms / group["clip_threshold"]).clamp_(min=1.0))
update.mul_(lr)
if use_first_moment:
exp_avg = state["exp_avg"]
exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"]))
update = exp_avg
if group["weight_decay"] != 0:
p.add_(p, alpha=(-group["weight_decay"] * lr))
p.add_(-update)
return loss