ColossalAI/colossalai/nn/optimizer/adafactor.py

202 lines
7.0 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
from torch.optim import Optimizer
__all__ = ["Adafactor"]
# Adafactor
class Adafactor(Optimizer):
def __init__(
self,
params,
lr=None,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
scale_parameter=True,
relative_step=True,
warmup_init=False,
):
lr = None
if lr is not None and relative_step:
raise ValueError("Cannot combine manual `lr` and `relative_step=True` options")
if warmup_init and not relative_step:
raise ValueError("`warmup_init=True` requires `relative_step=True`")
defaults = {
"lr": lr,
"eps": eps,
"clip_threshold": clip_threshold,
"decay_rate": decay_rate,
"beta1": beta1,
"weight_decay": weight_decay,
"scale_parameter": scale_parameter,
"relative_step": relative_step,
"warmup_init": warmup_init,
}
super().__init__(params, defaults)
@staticmethod
def _get_lr(param_group, param_state):
rel_step_sz = param_group["lr"]
if param_group["relative_step"]:
min_step = 1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
param_scale = 1.0
if param_group["scale_parameter"]:
param_scale = max(param_group["eps"][1], param_state["RMS"])
return param_scale * rel_step_sz
@staticmethod
def _get_options(param_group, param_shape):
factored = len(param_shape) >= 2
use_first_moment = param_group["beta1"] is not None
return factored, use_first_moment
@staticmethod
def _rms(tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
@staticmethod
def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization step
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
"""
param_groups: Dict
{
"params":[weight, bias]
"lr"
"eps"
"clip_threshold"
"decay_rate"
"beta1"
"weight_decay"
"scale_parameter"
"relative_step"
"warmup_init"
}
"""
for group in self.param_groups:
# update weight & bias
for p in group["params"]:
if p.grad is None:
continue
"""
# grad shape is same as weigh / bias
"""
grad = p.grad
if grad.is_sparse:
raise RuntimeError("Adafactor does not support sparse gradients.")
"""
p is weight
state
{'step',
'exp_avg_sq_row',
'exp_avg_sq_col',
'RMS'
}
p is bias
state
{'step',
'exp_avg_sq',
'RMS'
}
"""
state = self.state[p]
grad_shape = grad.shape
factored, use_first_moment = self._get_options(group, grad_shape)
# State Initialization
if len(state) == 0:
state["step"] = 0
if use_first_moment:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(grad)
if factored:
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1], device=grad.device)
state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:], device=grad.device)
else:
state["exp_avg_sq"] = torch.zeros_like(grad)
state["RMS"] = 0
else:
if use_first_moment:
state["exp_avg"] = state["exp_avg"]
if factored:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"]
state["exp_avg_sq_col"] = state["exp_avg_sq_col"]
else:
state["exp_avg_sq"] = state["exp_avg_sq"]
state["step"] += 1
# state["RMS"] = self._rms(p_data_fp32)
lr = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
update = (grad**2) + group["eps"][0]
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
# Exponential average of row indexes
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t))
# Exponential average of columns indexes
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t))
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
update = exp_avg_sq.rsqrt().mul_(grad)
# RMS
update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
update.mul_(lr)
if use_first_moment:
exp_avg = state["exp_avg"]
exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"]))
update = exp_avg
if group["weight_decay"] != 0:
p.add_(p, alpha=(-group["weight_decay"] * lr))
p.add_(-update)
return loss