mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
57 lines
1.5 KiB
57 lines
1.5 KiB
import pytest |
|
import torch |
|
import torch.nn as nn |
|
from torch.fx import symbolic_trace |
|
|
|
import colossalai |
|
import colossalai.nn as col_nn |
|
from colossalai.fx.passes.adding_split_node_pass import ( |
|
balanced_split_pass, |
|
balanced_split_pass_v2, |
|
split_with_split_nodes_pass, |
|
uniform_split_pass, |
|
) |
|
from colossalai.testing import clear_cache_before_run |
|
|
|
MODEL_DIM = 16 |
|
BATCH_SIZE = 8 |
|
PIPELINE_SIZE = 2 |
|
|
|
|
|
class MLP(torch.nn.Module): |
|
|
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.linear1 = torch.nn.Linear(dim, dim) |
|
self.linear2 = torch.nn.Linear(dim, dim) |
|
self.linear3 = torch.nn.Linear(dim, dim) |
|
self.linear4 = torch.nn.Linear(dim, dim) |
|
|
|
def forward(self, x): |
|
x = self.linear1(x) |
|
x = self.linear2(x) |
|
x = self.linear3(x) |
|
x = self.linear4(x) |
|
return x |
|
|
|
|
|
def pipeline_pass_test_helper(model, data, pass_func): |
|
origin_output = model(data) |
|
symbolic_traced = symbolic_trace(model) |
|
annotated_model = pass_func(symbolic_traced, PIPELINE_SIZE) |
|
split_model, split_submodules = split_with_split_nodes_pass(annotated_model) |
|
output = split_model(data) |
|
assert output.equal(origin_output) |
|
|
|
|
|
@clear_cache_before_run() |
|
def test_pipeline_passes(): |
|
model = MLP(MODEL_DIM) |
|
data = torch.rand(BATCH_SIZE, MODEL_DIM) |
|
pipeline_pass_test_helper(model, data, balanced_split_pass) |
|
pipeline_pass_test_helper(model, data, balanced_split_pass_v2) |
|
pipeline_pass_test_helper(model, data, uniform_split_pass) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_pipeline_passes()
|
|
|