mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
89 lines
2.7 KiB
89 lines
2.7 KiB
import copy |
|
import os |
|
from functools import partial |
|
|
|
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.testing import assert_close |
|
|
|
from colossalai.elixir.cuda import gpu_device |
|
from colossalai.elixir.search import simple_search |
|
from colossalai.elixir.utils import init_distributed, seed_all |
|
from colossalai.elixir.wrapper import ElixirModule |
|
from colossalai.testing import run_on_environment_flag |
|
from tests.test_elixir.utils import TEST_MODELS, to_cuda |
|
|
|
|
|
def check_gradient(ddp_model: nn.Module, test_model: ElixirModule): |
|
grad_state = test_model.state_dict(from_param=True) |
|
for name, param in ddp_model.named_parameters(): |
|
assert_close(param.grad.cpu(), grad_state[name]) |
|
|
|
|
|
def exam_one_module_fwd_bwd(model_fn, data_fn, nproc, group, exam_seed=2263): |
|
|
|
def one_step(local_model, local_input): |
|
loss = local_model(**local_input) |
|
loss.backward() |
|
return loss |
|
|
|
ddp_model = model_fn().cuda() |
|
test_model = copy.deepcopy(ddp_model) |
|
|
|
# get different data |
|
seed_all(exam_seed + dist.get_rank(group)) |
|
data = to_cuda(data_fn()) |
|
|
|
# wrap as DDP model |
|
ddp_model = DDP(ddp_model) |
|
# search how to initialize chunks |
|
sr = simple_search(test_model, |
|
nproc, |
|
shard_device=gpu_device(), |
|
prefetch=True, |
|
verbose=True, |
|
inp=data, |
|
step_fn=one_step) |
|
test_model = ElixirModule(test_model, sr, group, prefetch=True) |
|
|
|
seed_all(exam_seed, cuda_deterministic=True) |
|
ddp_loss = one_step(ddp_model, data) |
|
|
|
with torch.no_grad(): |
|
test_loss = test_model(**data) |
|
assert_close(ddp_loss, test_loss) |
|
|
|
test_loss = test_model(**data) |
|
test_model.backward(test_loss) |
|
assert_close(ddp_loss, test_loss) |
|
check_gradient(ddp_model.module, test_model) |
|
|
|
|
|
def exam_modules_fwd_bwd(nproc, group): |
|
model_fn, data_fn = TEST_MODELS.get('resnet') |
|
exam_one_module_fwd_bwd(model_fn, data_fn, nproc, group) |
|
|
|
|
|
def run_dist(rank, world_size): |
|
os.environ['RANK'] = str(rank) |
|
os.environ['LOCAL_RANK'] = str(rank) |
|
os.environ['WORLD_SIZE'] = str(world_size) |
|
os.environ['MASTER_ADDR'] = '127.0.0.1' |
|
os.environ['MASTER_PORT'] = str(29512) |
|
init_distributed() |
|
exam_modules_fwd_bwd(nproc=world_size, group=dist.GroupMember.WORLD) |
|
|
|
|
|
@pytest.mark.dist |
|
@pytest.mark.parametrize('world_size', [1, 2, 4]) |
|
@run_on_environment_flag('ELX') |
|
def test_module_prefetch(world_size): |
|
run_func = partial(run_dist, world_size=world_size) |
|
torch.multiprocessing.spawn(run_func, nprocs=world_size) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_module_prefetch(world_size=2)
|
|
|