Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

133 lines
4.5 KiB

import pytest
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import colossalai
from colossalai.legacy.amp import convert_to_apex_amp
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils import set_seed
from colossalai.zero import GeminiDDP, GeminiOptimizer
from colossalai.zero.gemini.chunk import search_chunk_configuration
from tests.kit.model_zoo import model_zoo, run_fwd_bwd
PLACEMENT_CONFIGS = [
{
"placement_policy": "static",
"shard_param_frac": 0.0,
"offload_optim_frac": 0.0,
"offload_param_frac": 0.0,
}, # zero2
{
"placement_policy": "static",
"shard_param_frac": 0.0,
"offload_optim_frac": 1.0,
"offload_param_frac": 0.0,
}, # zero2-offload
{
"placement_policy": "static",
"shard_param_frac": 0.0,
"offload_optim_frac": 0.5,
"offload_param_frac": 0.0,
}, # zero2-offload-half
{"placement_policy": "auto"},
]
def check_param(model: GeminiDDP, torch_model: torch.nn.Module):
zero_dict = model.state_dict(only_rank_0=False)
torch_dict = torch_model.state_dict()
for key, value in torch_dict.items():
# key is 'module.model.PARAMETER', so we truncate it
key = key[7:]
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype)
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value)))
assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3)
@parameterize("placement_config", PLACEMENT_CONFIGS)
@parameterize("model_name", ["transformers_gpt_lm"])
@parameterize("master_weights", [True, False])
def exam_grad_clipping(placement_config, model_name: str, master_weights: bool):
set_seed(1912)
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
iter(model_zoo.get_sub_registry(model_name).values())
)
torch_model = model_builder().cuda()
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=32)
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
model = model_builder()
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
p.data.copy_(torch_p.data)
world_size = torch.distributed.get_world_size()
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
config_dict[world_size]["chunk_size"] = 5000
config_dict[world_size]["keep_gathered"] = False
if placement_config["placement_policy"] != "cuda":
init_device = torch.device("cpu")
else:
init_device = None
model = GeminiDDP(
model,
chunk_config_dict=config_dict,
chunk_init_device=init_device,
pin_memory=True,
master_weights=master_weights,
**placement_config,
)
optimizer = HybridAdam(model.parameters(), lr=1e-3)
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=32, max_norm=1.0)
model.train()
torch_model.train()
set_seed(dist.get_rank() * 3 + 128)
train_dataloader = DummyDataloader(data_gen_fn)
for i, data in enumerate(train_dataloader):
if i > 2:
break
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()}
zero_optim.zero_grad()
torch_optim.zero_grad()
run_fwd_bwd(torch_model, data, output_transform_fn, loss_fn, optimizer=torch_optim)
run_fwd_bwd(model, data, output_transform_fn, loss_fn, optimizer=zero_optim)
import apex.amp as apex_amp
torch.nn.utils.clip_grad_norm_(apex_amp.master_params(torch_optim), 1.0)
torch_optim.step()
zero_optim.step()
if master_weights:
check_param(model, torch_model)
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_grad_clipping()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
@rerun_if_address_is_in_use()
def test_grad_clip(world_size):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_grad_clip(2)