mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
4.5 KiB
133 lines
4.5 KiB
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.testing import assert_close |
|
|
|
import colossalai |
|
from colossalai.legacy.amp import convert_to_apex_amp |
|
from colossalai.nn.optimizer import HybridAdam |
|
from colossalai.testing import DummyDataloader, parameterize, rerun_if_address_is_in_use, spawn |
|
from colossalai.utils import set_seed |
|
from colossalai.zero import GeminiDDP, GeminiOptimizer |
|
from colossalai.zero.gemini.chunk import search_chunk_configuration |
|
from tests.kit.model_zoo import model_zoo, run_fwd_bwd |
|
|
|
PLACEMENT_CONFIGS = [ |
|
{ |
|
"placement_policy": "static", |
|
"shard_param_frac": 0.0, |
|
"offload_optim_frac": 0.0, |
|
"offload_param_frac": 0.0, |
|
}, # zero2 |
|
{ |
|
"placement_policy": "static", |
|
"shard_param_frac": 0.0, |
|
"offload_optim_frac": 1.0, |
|
"offload_param_frac": 0.0, |
|
}, # zero2-offload |
|
{ |
|
"placement_policy": "static", |
|
"shard_param_frac": 0.0, |
|
"offload_optim_frac": 0.5, |
|
"offload_param_frac": 0.0, |
|
}, # zero2-offload-half |
|
{"placement_policy": "auto"}, |
|
] |
|
|
|
|
|
def check_param(model: GeminiDDP, torch_model: torch.nn.Module): |
|
zero_dict = model.state_dict(only_rank_0=False) |
|
torch_dict = torch_model.state_dict() |
|
|
|
for key, value in torch_dict.items(): |
|
# key is 'module.model.PARAMETER', so we truncate it |
|
key = key[7:] |
|
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) |
|
temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) |
|
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) |
|
assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) |
|
|
|
|
|
@parameterize("placement_config", PLACEMENT_CONFIGS) |
|
@parameterize("model_name", ["transformers_gpt_lm"]) |
|
@parameterize("master_weights", [True, False]) |
|
def exam_grad_clipping(placement_config, model_name: str, master_weights: bool): |
|
set_seed(1912) |
|
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next( |
|
iter(model_zoo.get_sub_registry(model_name).values()) |
|
) |
|
|
|
torch_model = model_builder().cuda() |
|
amp_config = dict(opt_level="O2", keep_batchnorm_fp32=False, loss_scale=32) |
|
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) |
|
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) |
|
torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) |
|
|
|
model = model_builder() |
|
|
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()): |
|
p.data.copy_(torch_p.data) |
|
|
|
world_size = torch.distributed.get_world_size() |
|
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) |
|
config_dict[world_size]["chunk_size"] = 5000 |
|
config_dict[world_size]["keep_gathered"] = False |
|
if placement_config["placement_policy"] != "cuda": |
|
init_device = torch.device("cpu") |
|
else: |
|
init_device = None |
|
|
|
model = GeminiDDP( |
|
model, |
|
chunk_config_dict=config_dict, |
|
chunk_init_device=init_device, |
|
pin_memory=True, |
|
master_weights=master_weights, |
|
**placement_config, |
|
) |
|
|
|
optimizer = HybridAdam(model.parameters(), lr=1e-3) |
|
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=32, max_norm=1.0) |
|
|
|
model.train() |
|
torch_model.train() |
|
|
|
set_seed(dist.get_rank() * 3 + 128) |
|
train_dataloader = DummyDataloader(data_gen_fn) |
|
for i, data in enumerate(train_dataloader): |
|
if i > 2: |
|
break |
|
data = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in data.items()} |
|
|
|
zero_optim.zero_grad() |
|
torch_optim.zero_grad() |
|
|
|
run_fwd_bwd(torch_model, data, output_transform_fn, loss_fn, optimizer=torch_optim) |
|
run_fwd_bwd(model, data, output_transform_fn, loss_fn, optimizer=zero_optim) |
|
|
|
import apex.amp as apex_amp |
|
|
|
torch.nn.utils.clip_grad_norm_(apex_amp.master_params(torch_optim), 1.0) |
|
torch_optim.step() |
|
zero_optim.step() |
|
|
|
if master_weights: |
|
check_param(model, torch_model) |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
config = {} |
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
exam_grad_clipping() |
|
|
|
|
|
@pytest.mark.dist |
|
@pytest.mark.parametrize("world_size", [1, 2]) |
|
@rerun_if_address_is_in_use() |
|
def test_grad_clip(world_size): |
|
spawn(run_dist, world_size) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_grad_clip(2)
|
|
|