mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
279 lines
9.0 KiB
279 lines
9.0 KiB
import copy |
|
from contextlib import nullcontext |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from torch.testing import assert_close |
|
from torch.utils.data import Dataset |
|
|
|
import colossalai |
|
from colossalai.accelerator import get_accelerator |
|
from colossalai.booster import Booster |
|
from colossalai.booster.plugin import HybridParallelPlugin |
|
from colossalai.fx import is_compatible_with_meta |
|
from colossalai.lazy.lazy_init import LazyInitContext |
|
from colossalai.nn.optimizer import HybridAdam |
|
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn |
|
from colossalai.utils import set_seed |
|
from tests.kit.model_zoo import model_zoo |
|
|
|
|
|
class RandomDataset(Dataset): |
|
def __init__(self, num_samples: int = 100, max_length: int = 512, vocab_size: int = 32000): |
|
self.num_samples = num_samples |
|
self.max_length = max_length |
|
set_seed(42) |
|
self.input_ids = torch.randint( |
|
0, vocab_size, (num_samples, max_length), device=get_accelerator().get_current_device() |
|
) |
|
self.attention_mask = torch.ones_like(self.input_ids) |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def __getitem__(self, idx): |
|
return { |
|
"input_ids": self.input_ids[idx], |
|
"attention_mask": self.attention_mask[idx], |
|
"labels": self.input_ids[idx], |
|
} |
|
|
|
|
|
def move_to_cuda(batch): |
|
return {k: v.cuda() for k, v in batch.items()} |
|
|
|
|
|
@clear_cache_before_run() |
|
def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]: |
|
try: |
|
if init_method == "lazy": |
|
ctx = LazyInitContext() |
|
else: |
|
ctx = nullcontext() |
|
plugin = HybridParallelPlugin(tp_size=2, pp_size=2, num_microbatches=4, precision="bf16") |
|
booster = Booster(plugin=plugin) |
|
with ctx: |
|
model = model_fn() |
|
optimizer = HybridAdam(model.parameters(), lr=1e-3) |
|
criterion = lambda x: x.mean() |
|
data = data_gen_fn() |
|
|
|
data = { |
|
k: v.to("cuda").repeat(4, 1) if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v |
|
for k, v in data.items() |
|
} |
|
|
|
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) |
|
|
|
data_iter = iter([data]) |
|
|
|
def _criterion(outputs, inputs): |
|
outputs = output_transform_fn(outputs) |
|
output_key = list(outputs.keys())[0] |
|
loss = criterion(outputs[output_key]) |
|
return loss |
|
|
|
booster.execute_pipeline(data_iter, model, _criterion, optimizer, return_loss=True) |
|
optimizer.step() |
|
|
|
except Exception as e: |
|
return repr(e) |
|
|
|
|
|
@parameterize("init_method", ["none", "lazy"]) |
|
def check_3d_plugin(init_method: str = "none", early_stop: bool = True): |
|
"""check hybrid plugin over model zoo |
|
|
|
Args: |
|
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True. |
|
""" |
|
is_support_meta = is_compatible_with_meta() |
|
if not is_support_meta and init_method == "lazy": |
|
return |
|
|
|
passed_models = [] |
|
failed_info = {} # (model_name, error) pair |
|
|
|
# TODO(ver217): add more models |
|
for name, (model_fn, data_gen_fn, output_transform_fn, _, _) in model_zoo.get_sub_registry( |
|
"transformers_llama_for_casual_lm" |
|
).items(): |
|
err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) |
|
|
|
if err is None: |
|
passed_models.append(name) |
|
else: |
|
failed_info[name] = err |
|
if early_stop: |
|
break |
|
|
|
if dist.get_rank() == 0: |
|
print(f"Init method: {init_method}") |
|
print(f"Passed models({len(passed_models)}): {passed_models}\n\n") |
|
print(f"Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n") |
|
assert len(failed_info) == 0, "\n".join([f"{k}: {v}" for k, v in failed_info.items()]) |
|
|
|
|
|
@parameterize( |
|
"test_args", |
|
[ |
|
{ |
|
"batch_size": 8, |
|
"num_steps": 4, |
|
"tp": 2, |
|
"pp": 2, |
|
"pp_style": "1f1b", |
|
"num_model_chunks": 1, |
|
"num_microbatches": 4, |
|
"zero": 1, |
|
"precision": "fp16", |
|
"initial_scale": 1, |
|
"max_length": 512, |
|
"gradient_accumulation_step": 2, |
|
}, |
|
{ |
|
"batch_size": 8, |
|
"num_steps": 4, |
|
"tp": 2, |
|
"pp": 2, |
|
"pp_style": "1f1b", |
|
"num_model_chunks": 1, |
|
"num_microbatches": 4, |
|
"zero": 0, |
|
"precision": "fp16", |
|
"initial_scale": 1, |
|
"max_length": 512, |
|
"gradient_accumulation_step": 2, |
|
}, |
|
{ |
|
"batch_size": 8, |
|
"num_steps": 4, |
|
"tp": 1, |
|
"pp": 2, |
|
"pp_style": "1f1b", |
|
"num_model_chunks": 1, |
|
"num_microbatches": 4, |
|
"zero": 1, |
|
"precision": "fp16", |
|
"initial_scale": 1, |
|
"max_length": 512, |
|
"gradient_accumulation_step": 2, |
|
}, |
|
{ |
|
"batch_size": 1, |
|
"num_steps": 4, |
|
"tp": 2, |
|
"pp": 1, |
|
"pp_style": "1f1b", |
|
"num_model_chunks": 1, |
|
"num_microbatches": 1, |
|
"zero": 2, |
|
"precision": "fp16", |
|
"initial_scale": 1, |
|
"max_length": 512, |
|
"gradient_accumulation_step": 2, |
|
}, |
|
{ |
|
"batch_size": 1, |
|
"num_steps": 4, |
|
"tp": 2, |
|
"pp": 1, |
|
"pp_style": "1f1b", |
|
"num_model_chunks": 1, |
|
"num_microbatches": 1, |
|
"zero": 0, |
|
"precision": "fp16", |
|
"initial_scale": 1, |
|
"max_length": 512, |
|
"gradient_accumulation_step": 2, |
|
}, |
|
], |
|
) |
|
def run_grad_acc_test(test_args): |
|
model_fn, *_ = next(iter(model_zoo.get_sub_registry("transformers_gpt_lm").values())) |
|
model = model_fn() |
|
optimizer = HybridAdam(model.parameters()) |
|
origin_model = copy.deepcopy(model).cuda() |
|
origin_optimizer = HybridAdam(origin_model.parameters()) |
|
|
|
plugin = HybridParallelPlugin( |
|
tp_size=test_args["tp"], |
|
pp_size=test_args["pp"], |
|
pp_style=test_args["pp_style"], |
|
zero_stage=test_args["zero"], |
|
num_model_chunks=test_args["num_model_chunks"], |
|
enable_fused_normalization=True, |
|
num_microbatches=test_args["num_microbatches"], |
|
precision=test_args["precision"], |
|
) |
|
booster = Booster(plugin=plugin) |
|
|
|
dataset = RandomDataset( |
|
num_samples=test_args["batch_size"] * test_args["num_steps"] * plugin.dp_size, |
|
max_length=test_args["max_length"], |
|
vocab_size=model.config.vocab_size, |
|
) |
|
dataloader = plugin.prepare_dataloader(dataset, batch_size=test_args["batch_size"], shuffle=True, drop_last=True) |
|
|
|
model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader) |
|
|
|
grad_accu_step = test_args["gradient_accumulation_step"] |
|
for step, batch in enumerate(dataloader): |
|
batch = move_to_cuda(batch) |
|
# train origin model |
|
origin_output = origin_model(**batch) |
|
origin_loss = origin_output[0] / grad_accu_step |
|
origin_loss.backward() |
|
|
|
if (step + 1) % grad_accu_step != 0 and test_args["zero"] != 2: |
|
ctx = booster.no_sync(model, optimizer) |
|
else: |
|
ctx = nullcontext() |
|
|
|
with ctx: |
|
if plugin.stage_manager is not None: |
|
batch = iter([batch]) |
|
booster.execute_pipeline( |
|
batch, |
|
model, |
|
criterion=lambda outputs, inputs: outputs[0] / grad_accu_step, |
|
optimizer=optimizer, |
|
return_loss=False, |
|
) |
|
else: |
|
outputs = model(**batch) |
|
loss = outputs[0] / grad_accu_step |
|
booster.backward(loss, optimizer) |
|
|
|
if (step + 1) % grad_accu_step == 0: |
|
# update origin model weight |
|
origin_optimizer.step() |
|
origin_optimizer.zero_grad() |
|
|
|
# update sharded model |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
# tricky code here, shard the origin model inorder to check the parameters in the same stage. |
|
origin_model, origin_optimizer, _, dataloader, _ = booster.boost( |
|
origin_model, origin_optimizer, dataloader=dataloader |
|
) |
|
for p1, p2 in zip(model.unwrap().parameters(), origin_model.unwrap().parameters()): |
|
assert_close(p1.to(p2.dtype), p2, atol=1e-2, rtol=1e-2) |
|
|
|
|
|
def run_dist(rank, world_size, port, early_stop: bool = True): |
|
# init dist env |
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host="localhost") |
|
check_3d_plugin(early_stop=early_stop) |
|
run_grad_acc_test() |
|
|
|
|
|
@rerun_if_address_is_in_use() |
|
def test_3d_plugin(early_stop: bool = True): |
|
spawn(run_dist, 4, early_stop=early_stop) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_3d_plugin(early_stop=False)
|
|
|