Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

120 lines
4.3 KiB

from time import time
from typing import Optional
import torch
import torch.distributed as dist
from torch import Tensor
from colossalai.accelerator import get_accelerator
from colossalai.cluster import DistCoordinator
def divide(x: float, y: float) -> float:
if y == 0:
return float("inf")
elif y == float("inf"):
return float("nan")
return x / y
@torch.no_grad()
def all_reduce_mean(x: float, world_size: int) -> float:
if world_size == 1:
return x
tensor = torch.tensor([x], device=get_accelerator().get_current_device())
dist.all_reduce(tensor)
tensor = tensor / world_size
return tensor.item()
class Timer:
def __init__(self) -> None:
self.start_time: Optional[float] = None
self.duration: float = 0.0
def start(self) -> None:
self.start_time = time()
def end(self) -> None:
assert self.start_time is not None
self.duration += time() - self.start_time
self.start_time = None
def reset(self) -> None:
self.duration = 0.0
class PerformanceEvaluator:
"""
Callback for valuate the performance of the model.
Args:
actor_num_params: The number of parameters of the actor model.
critic_num_params: The number of parameters of the critic model.
initial_model_num_params: The number of parameters of the initial model.
reward_model_num_params: The number of parameters of the reward model.
enable_grad_checkpoint: Whether to enable gradient checkpointing.
ignore_episodes: The number of episodes to ignore when calculating the performance.
"""
def __init__(
self,
model_numel: int,
num_layers: int,
hidden_size: int,
vocab_size: int,
enable_grad_checkpoint: bool = False,
ignore_steps: int = 0,
dp_world_size: Optional[int] = None,
) -> None:
self.model_numel = model_numel
self.enable_grad_checkpoint = enable_grad_checkpoint
self.ignore_steps = ignore_steps
self.num_layers = num_layers
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.coordinator = DistCoordinator()
self.dp_world_size = dp_world_size or self.coordinator.world_size
self.disable: bool = False
self.timer = Timer()
self.num_samples: int = 0
self.flop_megatron = 0
self.flop: int = 0
def on_step_start(self, step: int) -> None:
self.disable = self.ignore_steps > 0 and step < self.ignore_steps
if self.disable:
return
get_accelerator().synchronize()
self.timer.start()
def on_step_end(self, input_ids: Tensor, **kwargs) -> None:
if self.disable:
return
get_accelerator().synchronize()
self.timer.end()
batch_size, seq_len = input_ids.shape
self.num_samples += batch_size
checkpoint_activations_factor = 3 + int(self.enable_grad_checkpoint)
self.flop_megatron += (
24 * checkpoint_activations_factor * batch_size * seq_len * self.num_layers * (self.hidden_size**2)
) * (
1.0 + (seq_len / (6.0 * self.hidden_size)) + (self.vocab_size / (16.0 * self.num_layers * self.hidden_size))
)
self.flop += batch_size * seq_len * self.model_numel * 2 * (3 + int(self.enable_grad_checkpoint))
def on_fit_end(self) -> None:
avg_duration = all_reduce_mean(self.timer.duration, self.coordinator.world_size)
avg_throughput = self.num_samples * self.dp_world_size / (avg_duration + 1e-12)
mp_world_size = self.coordinator.world_size // self.dp_world_size
avg_tflops_per_gpu_megatron = self.flop_megatron / 1e12 / (avg_duration + 1e-12) / mp_world_size
avg_tflops_per_gpu = self.flop / 1e12 / (avg_duration + 1e-12) / mp_world_size
self.coordinator.print_on_master(
f"num_samples: {self.num_samples}, dp_world_size: {self.dp_world_size}, flop_megatron: {self.flop_megatron}, flop: {self.flop}, avg_duration: {avg_duration}, "
f"avg_throughput: {avg_throughput}"
)
self.coordinator.print_on_master(
f"Throughput: {avg_throughput:.2f} samples/sec, TFLOPS per GPU by Megatron: {avg_tflops_per_gpu_megatron:.2f}, TFLOPS per GPU: {avg_tflops_per_gpu:.2f}"
)