mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
109 lines
2.5 KiB
109 lines
2.5 KiB
model: |
|
base_learning_rate: 1.0e-4 |
|
params: |
|
parameterization: "v" |
|
linear_start: 0.00085 |
|
linear_end: 0.0120 |
|
num_timesteps_cond: 1 |
|
log_every_t: 200 |
|
timesteps: 1000 |
|
first_stage_key: image |
|
cond_stage_key: txt |
|
image_size: 64 |
|
channels: 4 |
|
cond_stage_trainable: false |
|
conditioning_key: crossattn |
|
monitor: val/loss_simple_ema |
|
scale_factor: 0.18215 |
|
use_ema: False # we set this to false because this is an inference only config |
|
|
|
scheduler_config: # 10000 warmup steps |
|
warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch |
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases |
|
f_start: [ 1.e-6 ] |
|
f_max: [ 1.e-4 ] |
|
f_min: [ 1.e-10 ] |
|
|
|
|
|
unet_config: |
|
use_checkpoint: True |
|
use_fp16: True |
|
image_size: 32 # unused |
|
in_channels: 4 |
|
out_channels: 4 |
|
model_channels: 320 |
|
attention_resolutions: [ 4, 2, 1 ] |
|
num_res_blocks: 2 |
|
channel_mult: [ 1, 2, 4, 4 ] |
|
num_head_channels: 64 # need to fix for flash-attn |
|
use_spatial_transformer: True |
|
use_linear_in_transformer: True |
|
transformer_depth: 1 |
|
context_dim: 1024 |
|
legacy: False |
|
|
|
first_stage_config: |
|
embed_dim: 4 |
|
monitor: val/rec_loss |
|
ddconfig: |
|
#attn_type: "vanilla-xformers" |
|
double_z: true |
|
z_channels: 4 |
|
resolution: 256 |
|
in_channels: 3 |
|
out_ch: 3 |
|
ch: 128 |
|
ch_mult: |
|
- 1 |
|
- 2 |
|
- 4 |
|
- 4 |
|
num_res_blocks: 2 |
|
attn_resolutions: [] |
|
dropout: 0.0 |
|
lossconfig: |
|
|
|
|
|
cond_stage_config: |
|
freeze: True |
|
layer: "penultimate" |
|
|
|
data: |
|
batch_size: 128 |
|
wrap: False |
|
# num_workwers should be 2 * batch_size, and total num less than 1024 |
|
# e.g. if use 8 devices, no more than 128 |
|
num_workers: 128 |
|
train: |
|
target: ldm.data.base.Txt2ImgIterableBaseDataset |
|
params: |
|
file_path: # YOUR DATASET_PATH |
|
world_size: 1 |
|
rank: 0 |
|
|
|
lightning: |
|
trainer: |
|
accelerator: 'gpu' |
|
devices: 2 |
|
log_gpu_memory: all |
|
max_epochs: 2 |
|
precision: 16 |
|
auto_select_gpus: False |
|
strategy: |
|
use_chunk: True |
|
enable_distributed_storage: True |
|
placement_policy: cuda |
|
force_outputs_fp32: true |
|
min_chunk_size: 64 |
|
|
|
log_every_n_steps: 2 |
|
logger: True |
|
default_root_dir: "/tmp/diff_log/" |
|
# profiler: pytorch |
|
|
|
logger_config: |
|
wandb: |
|
name: nowname |
|
save_dir: "/tmp/diff_log/" |
|
offline: opt.debug |
|
id: nowname
|
|
|