ColossalAI/examples/language/roberta/pretraining/arguments.py

153 lines
4.2 KiB
Python

import colossalai
from numpy import require
__all__ = ['parse_args']
def parse_args():
parser = colossalai.get_default_parser()
parser.add_argument(
'--lr',
type=float,
required=True,
help='initial learning rate')
parser.add_argument(
'--epoch',
type=int,
required=True,
help='number of epoch')
parser.add_argument(
'--data_path_prefix',
type=str,
required=True,
help="location of the train data corpus")
parser.add_argument(
'--eval_data_path_prefix',
type=str,
required=True,
help='location of the evaluation data corpus')
parser.add_argument(
'--tokenizer_path',
type=str,
required=True,
help='location of the tokenizer')
parser.add_argument(
'--max_seq_length',
type=int,
default=512,
help='sequence length')
parser.add_argument(
'--refresh_bucket_size',
type=int,
default=1,
help=
"This param makes sure that a certain task is repeated for this time steps to \
optimise on the back propogation speed with APEX's DistributedDataParallel")
parser.add_argument(
"--max_predictions_per_seq",
"--max_pred",
default=80,
type=int,
help=
"The maximum number of masked tokens in a sequence to be predicted.")
parser.add_argument(
"--gradient_accumulation_steps",
default=1,
type=int,
help="accumulation_steps")
parser.add_argument(
"--train_micro_batch_size_per_gpu",
default=2,
type=int,
required=True,
help="train batch size")
parser.add_argument(
"--eval_micro_batch_size_per_gpu",
default=2,
type=int,
required=True,
help="eval batch size")
parser.add_argument(
"--num_workers",
default=8,
type=int,
help="")
parser.add_argument(
"--async_worker",
action='store_true',
help="")
parser.add_argument(
"--bert_config",
required=True,
type=str,
help="location of config.json")
parser.add_argument(
"--wandb",
action='store_true',
help="use wandb to watch model")
parser.add_argument(
"--wandb_project_name",
default='roberta',
help="wandb project name")
parser.add_argument(
"--log_interval",
default=100,
type=int,
help="report interval")
parser.add_argument(
"--log_path",
type=str,
required=True,
help="log file which records train step")
parser.add_argument(
"--tensorboard_path",
type=str,
required=True,
help="location of tensorboard file")
parser.add_argument(
"--colossal_config",
type=str,
required=True,
help="colossal config, which contains zero config and so on")
parser.add_argument(
"--ckpt_path",
type=str,
required=True,
help="location of saving checkpoint, which contains model and optimizer")
parser.add_argument(
'--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument(
'--vscode_debug',
action='store_true',
help="use vscode to debug")
parser.add_argument(
'--load_pretrain_model',
default='',
type=str,
help="location of model's checkpoin")
parser.add_argument(
'--load_optimizer_lr',
default='',
type=str,
help="location of checkpoint, which contains optimerzier, learning rate, epoch, shard and global_step")
parser.add_argument(
'--resume_train',
action='store_true',
help="whether resume training from a early checkpoint")
parser.add_argument(
'--mlm',
default='bert',
type=str,
help="model type, bert or deberta")
parser.add_argument(
'--checkpoint_activations',
action='store_true',
help="whether to use gradient checkpointing")
args = parser.parse_args()
return args