mirror of https://github.com/hpcaitech/ColossalAI
564 lines
24 KiB
Python
564 lines
24 KiB
Python
from colossalai.utils.cuda import get_current_device
|
|
import torch
|
|
import torch.distributed as dist
|
|
from colossalai.logging import get_dist_logger
|
|
from torch.optim import Optimizer
|
|
from .bookkeeping import ParameterStore, GradientStore, BucketStore, TensorBucket
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
|
|
from colossalai.nn.optimizer import ColossalaiOptimizer
|
|
from ._utils import (move_tensor, flatten, get_grad_accumulate_object, split_half_float_double, reduce_tensor,
|
|
release_param_grad, calculate_global_norm_from_list, compute_norm, sync_param, has_inf_or_nan)
|
|
from functools import partial
|
|
|
|
|
|
class ShardedOptimizer(ColossalaiOptimizer):
|
|
|
|
def __init__(self,
|
|
optimizer: Optimizer,
|
|
initial_scale=2**32,
|
|
min_scale=1,
|
|
growth_factor=2,
|
|
backoff_factor=0.5,
|
|
growth_interval=1000,
|
|
hysteresis=2,
|
|
max_scale: int = 2**32,
|
|
clip_grad_norm=2.0,
|
|
verbose=False,
|
|
reduce_bucket_size=500000000,
|
|
communication_dtype=torch.float16,
|
|
overlap_communication=False,
|
|
partition_grad=False,
|
|
dp_parallel_mode=ParallelMode.DATA,
|
|
mp_parallel_mode=ParallelMode.MODEL,
|
|
cpu_offload=False,
|
|
cpu_fp16_param=False,
|
|
cpu_fp16_grad=False):
|
|
|
|
# TODO: add support for
|
|
# 1. fp16 master weights
|
|
# 2. contiguous gradients
|
|
# 3. cpu offload
|
|
# 4. support when some parameters requires_grad = False
|
|
|
|
self._optimizer = optimizer
|
|
self._dtype = self._optimizer.param_groups[0]['params'][0].dtype
|
|
self._logger = get_dist_logger()
|
|
self._verbose = verbose
|
|
|
|
# stage 2
|
|
self._partition_grads = partition_grad
|
|
|
|
# cpu_offload
|
|
self._cpu_offload = cpu_offload
|
|
self._cpu_fp16_param = cpu_fp16_param
|
|
self._cpu_fp16_grad = cpu_fp16_grad
|
|
|
|
# get process groups
|
|
self._dp_parallel_mode = dp_parallel_mode
|
|
self._mp_parallel_mode = mp_parallel_mode
|
|
self._local_rank = gpc.get_local_rank(dp_parallel_mode)
|
|
self._world_size = gpc.get_world_size(dp_parallel_mode)
|
|
|
|
self._dp_group = gpc.get_group(dp_parallel_mode)
|
|
if gpc.is_initialized(mp_parallel_mode) and gpc.get_world_size(mp_parallel_mode) > 1:
|
|
self._mp_group = gpc.get_group(mp_parallel_mode)
|
|
else:
|
|
self._mp_group = None
|
|
|
|
# fp16 and fp32 params for mixed precision training
|
|
self._fp16_param_groups = dict()
|
|
self._fp32_flat_param_groups_of_current_rank = dict()
|
|
|
|
# communication params
|
|
self._overlap_communication = overlap_communication
|
|
self._reduce_bucket_size = reduce_bucket_size
|
|
self._communication_dtype = communication_dtype
|
|
|
|
# gradient scaler
|
|
self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale,
|
|
min_scale=min_scale,
|
|
growth_factor=growth_factor,
|
|
backoff_factor=backoff_factor,
|
|
growth_interval=growth_interval,
|
|
hysteresis=hysteresis,
|
|
max_scale=max_scale,
|
|
verbose=verbose)
|
|
self._found_overflow = torch.FloatTensor([0]).to(get_current_device())
|
|
|
|
# gradient clipping
|
|
self._clip_grad_norm = clip_grad_norm
|
|
|
|
# check argument conflict
|
|
self._sanity_checks()
|
|
|
|
# ParameterStore will manage the tensor buffers used for zero
|
|
# it will not manage the tensors used by mixed precision training
|
|
self._param_store = ParameterStore(self._dp_parallel_mode)
|
|
self._grad_store = GradientStore(self._dp_parallel_mode)
|
|
self._bucket_store = BucketStore(self._dp_parallel_mode)
|
|
|
|
# iterate over the param group in the optimizer
|
|
# partition these param groups for data parallel training
|
|
# and add buffers to parameter store for future access
|
|
for group_id, param_group in enumerate(self._optimizer.param_groups):
|
|
params = param_group['params']
|
|
|
|
# add the fp16 params to fp16_param_groups for bookkeeping
|
|
self._fp16_param_groups[group_id] = params
|
|
|
|
# assign parameters to ranks
|
|
# the params in the list are sorted
|
|
params_per_rank = self._partition_param_list(params)
|
|
|
|
# store the mapping between param to rank
|
|
# each param should belong to only one rank
|
|
for rank, params in enumerate(params_per_rank):
|
|
self._param_store.add_fp16_param_list_by_rank_group(rank, group_id, params)
|
|
for param in params:
|
|
self._param_store.set_param_to_rank(param, rank)
|
|
|
|
# move to cpu to make room to create the flat tensor
|
|
move_tensor(params, device='cpu')
|
|
|
|
# flatten the reordered tensors
|
|
for rank in range(self._world_size):
|
|
tensor_list = self._param_store.get_fp16_params_by_rank_group(rank, group_id)
|
|
flat_tensor = flatten(tensor_list)
|
|
flat_tensor = flat_tensor.cuda()
|
|
self._param_store.add_flat_fp16_param_by_rank_group(rank, group_id, flat_tensor)
|
|
|
|
# sync parameters
|
|
for rank in range(self._world_size):
|
|
flat_tensor = self._param_store.get_flat_fp16_param_by_rank_group(rank, group_id)
|
|
tensor_list = self._param_store.get_fp16_params_by_rank_group(rank, group_id)
|
|
sync_param(flat_tensor=flat_tensor, tensor_list=tensor_list)
|
|
|
|
# create a copy of fp32 weights of the parameters for which this rank is responsible
|
|
fp16_flat_current_rank = self._param_store.get_flat_fp16_param_by_rank_group(self._local_rank, group_id)
|
|
# when using cpu offload, our cpu adam support fp16 paramters
|
|
if self._cpu_fp16_param:
|
|
fp32_flat_current_rank = fp16_flat_current_rank.detach()
|
|
else:
|
|
fp32_flat_current_rank = fp16_flat_current_rank.detach().float()
|
|
device = 'cpu' if self._cpu_offload else get_current_device()
|
|
fp32_flat_current_rank = fp32_flat_current_rank.to(device)
|
|
fp32_flat_current_rank.requires_grad = True
|
|
self._fp32_flat_param_groups_of_current_rank[group_id] = fp32_flat_current_rank
|
|
|
|
# need to replace the params in the `params` field in the optimizer
|
|
# so that when the optimizer calls step(), it only updates the tensors
|
|
# managed by this data parallel rank
|
|
param_group['params'] = [fp32_flat_current_rank]
|
|
|
|
# set reduction state
|
|
for param in self._fp16_param_groups[group_id]:
|
|
self._param_store.set_param_reduction_state(param, False)
|
|
|
|
# intialize communication stream for
|
|
# communication-compuation overlapping
|
|
if self._overlap_communication:
|
|
self._comm_stream = torch.cuda.Stream()
|
|
|
|
# reduction hook is only used if overlapping communication
|
|
# or stage 2 is used
|
|
# if it is stage 1 without overlapping, no hook will be attached
|
|
if self._overlap_communication or self._partition_grads:
|
|
self._attach_reduction_hook()
|
|
|
|
self._initialize_optimizer_states()
|
|
|
|
@property
|
|
def loss_scale(self):
|
|
return self.grad_scaler.scale
|
|
|
|
@property
|
|
def num_param_groups(self):
|
|
return len(self._fp16_param_groups)
|
|
|
|
def _partition_param_list(self, param_list):
|
|
params_per_rank = [[] for _ in range(self._world_size)]
|
|
numel_per_rank = [0 for _ in range(self._world_size)]
|
|
|
|
# partititon the parameters in a greedy fashion
|
|
sorted_params = sorted(param_list, key=lambda x: x.numel(), reverse=True)
|
|
for param in sorted_params:
|
|
# allocate this parameter to the rank with
|
|
# the smallest numel for load balancing purpose
|
|
rank_to_go = numel_per_rank.index(min(numel_per_rank))
|
|
params_per_rank[rank_to_go].append(param)
|
|
numel_per_rank[rank_to_go] += param.numel()
|
|
|
|
if self._verbose:
|
|
self._logger.info(f'Number of elements on ranks: {numel_per_rank}',
|
|
ranks=[0],
|
|
parallel_mode=self._dp_parallel_mode)
|
|
return params_per_rank
|
|
|
|
def _initialize_optimizer_states(self):
|
|
# create a dummy zero tensor which has the same shape as that of the param
|
|
# set this dummpy zero tensor as grad
|
|
for group_id in range(len(self._fp32_flat_param_groups_of_current_rank)):
|
|
fp32_partition_param = self._fp32_flat_param_groups_of_current_rank[group_id]
|
|
fp32_partition_grad = torch.zeros_like(fp32_partition_param)
|
|
fp32_partition_param.grad = fp32_partition_grad
|
|
|
|
# update the parameter with zero gradients for initialization of optimizer stateus
|
|
self._optimizer.step()
|
|
|
|
# remove the grad of the paramter to save memory
|
|
for group_id, fp32_flat_tensor in self._fp32_flat_param_groups_of_current_rank.items():
|
|
fp32_flat_tensor.grad = None
|
|
|
|
def _sanity_checks(self):
|
|
assert torch.cuda.is_available(), 'CUDA is required'
|
|
assert self._dtype == torch.float16, \
|
|
f'Parameters are expected to be of type torch.float16, but got {self._dtype}'
|
|
|
|
###########################################################
|
|
# Backward Reduction Hook
|
|
###########################################################
|
|
|
|
def _attach_reduction_hook(self):
|
|
# we iterate over the fp16 params
|
|
# on each param, we register a hook to its AccumulateGrad object
|
|
for group_id in range(self.num_param_groups):
|
|
param_group = self._fp16_param_groups[group_id]
|
|
for param in param_group:
|
|
if param.requires_grad:
|
|
# determines the reduction destionation rank
|
|
# this is only valid for stage 2
|
|
# dst_rank = None means using all-reduce
|
|
# else using reduce
|
|
if self._partition_grads:
|
|
reduce_rank = self._param_store.get_param_rank(param)
|
|
else:
|
|
reduce_rank = None
|
|
|
|
def _define_and_attach(param, reduce_rank):
|
|
# get the AccumulateGrad object of the param itself
|
|
accum_grad_obj = get_grad_accumulate_object(param)
|
|
self._grad_store.add_accumulate_grad_object(accum_grad_obj)
|
|
|
|
reduction_func = partial(self._reduce_and_remove_grads_by_bucket,
|
|
param=param,
|
|
reduce_rank=reduce_rank)
|
|
|
|
# define hook
|
|
# NOT IMPORTANT BUT GOOD TO KNOW:
|
|
# args here is not grad, but allow_unreacable and accumulate_grad
|
|
def reduce_grad_hook(*args):
|
|
reduction_func()
|
|
|
|
accum_grad_obj.register_hook(reduce_grad_hook)
|
|
|
|
_define_and_attach(param, reduce_rank)
|
|
|
|
def _reduce_and_remove_grads_by_bucket(self, param, reduce_rank=None):
|
|
param_size = param.numel()
|
|
|
|
# check if the bucket is full
|
|
# if full, will reduce the grads already in the bucket
|
|
# after reduction, the bucket will be empty
|
|
if self._bucket_store.num_elements_in_bucket(reduce_rank) + param_size > self._reduce_bucket_size:
|
|
self._reduce_grads_in_bucket(reduce_rank)
|
|
|
|
# the param must not be reduced to ensure correctness
|
|
is_param_reduced = self._param_store.is_param_reduced(param)
|
|
if is_param_reduced:
|
|
msg = f'Parameter of size ({param.size()}) has already been reduced, ' \
|
|
+ 'duplicate reduction will lead to arithmetic incorrectness'
|
|
raise RuntimeError(msg)
|
|
|
|
# the param must have grad for reduction
|
|
assert param.grad is not None, f'Parameter of size ({param.size()}) has None grad, cannot be reduced'
|
|
|
|
self._bucket_store.add_num_elements_in_bucket(param_size, reduce_rank)
|
|
self._bucket_store.add_grad(param.grad, reduce_rank)
|
|
self._bucket_store.add_param(param, reduce_rank)
|
|
|
|
def _reduce_grads_in_bucket(self, reduce_rank=None):
|
|
# reduce grads
|
|
self._reduce_grads_by_rank(reduce_rank=reduce_rank,
|
|
grads=self._bucket_store.get_grad(reduce_rank=reduce_rank),
|
|
bucket_size=self._bucket_store.num_elements_in_bucket(reduce_rank))
|
|
|
|
# use communication stream if overlapping
|
|
# communication with computation
|
|
if self._overlap_communication:
|
|
stream = self._comm_stream
|
|
else:
|
|
stream = torch.cuda.current_stream()
|
|
|
|
with torch.cuda.stream(stream):
|
|
params_in_bucket = self._bucket_store.get_param(reduce_rank=reduce_rank)
|
|
|
|
for param in params_in_bucket:
|
|
# the is_param_reduced flag should be False showing that
|
|
# this param is not reduced before calling self._reduce_grads_by_rank
|
|
is_param_reduced = self._param_store.is_param_reduced(param)
|
|
|
|
if is_param_reduced:
|
|
msg = f'Parameter of size ({param.size()}) has been reduced, ' + \
|
|
'duplicate reduction will lead to arithmetic incorrectness'
|
|
raise RuntimeError(msg)
|
|
|
|
# update the flag
|
|
self._param_store.set_param_reduction_state(param, True)
|
|
|
|
# if partition grads = True
|
|
# we do not keep the gradient after reduction
|
|
if self._partition_grads and not self._param_store.belongs_to_current_rank(param):
|
|
if self._overlap_communication:
|
|
# we need to keep this gradient for now as reduction may
|
|
# be completed yet since it is using a different cuda stream
|
|
self._param_store.add_previous_reduced_param(param)
|
|
else:
|
|
param.grad = None
|
|
|
|
self._bucket_store.reset_by_rank(reduce_rank)
|
|
|
|
def _reduce_grads_by_rank(self, reduce_rank, grads, bucket_size):
|
|
grad_buckets_by_dtype = split_half_float_double(grads)
|
|
|
|
for tensor_list in grad_buckets_by_dtype:
|
|
self._reduce_no_retain(tensor_list=tensor_list, bucket_size=bucket_size, reduce_rank=reduce_rank)
|
|
|
|
##############################
|
|
# Reduction Utility Function #
|
|
##############################
|
|
def _reduce_no_retain(self, tensor_list, bucket_size, reduce_rank):
|
|
param_bucket = TensorBucket(size=bucket_size)
|
|
|
|
for tensor in tensor_list:
|
|
param_bucket.add_to_bucket(tensor, allow_oversize=True)
|
|
|
|
if param_bucket.is_full_or_oversized():
|
|
self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank)
|
|
param_bucket.empty()
|
|
|
|
if not param_bucket.is_empty():
|
|
self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank)
|
|
|
|
def _reduce_and_copy(self, bucket: TensorBucket, reduce_rank):
|
|
if self._overlap_communication:
|
|
torch.cuda.synchronize()
|
|
self._param_store.clear_grads_of_previous_reduced_params()
|
|
stream = self._comm_stream
|
|
else:
|
|
stream = torch.cuda.current_stream()
|
|
|
|
with torch.cuda.stream(stream):
|
|
flat = bucket.flatten()
|
|
reduced_flat = reduce_tensor(tensor=flat,
|
|
dtype=self._communication_dtype,
|
|
dst_rank=reduce_rank,
|
|
parallel_mode=self._dp_parallel_mode)
|
|
|
|
# update the reduced tensor
|
|
if reduce_rank is None or reduce_rank == self._local_rank:
|
|
bucket.unflatten_and_copy(reduced_flat)
|
|
|
|
################################
|
|
# torch.optim.Optimizer methods
|
|
################################
|
|
|
|
def backward(self, loss, retain_graph=True):
|
|
loss = self.loss_scale * loss
|
|
loss.backward(retain_graph=retain_graph)
|
|
|
|
def zero_grad(self, set_to_none=True):
|
|
"""
|
|
Set parameter gradients to zero. If set_to_none = True, gradient
|
|
will be set to None to save memory.
|
|
|
|
:param set_to_none: Whether set the gradient to None. Default value is True.
|
|
:type set_to_none: bool
|
|
"""
|
|
for group_id, param_group in self._fp16_param_groups.items():
|
|
for param in param_group:
|
|
if set_to_none:
|
|
param.grad = None
|
|
else:
|
|
if param.grad is not None:
|
|
param.grad.detach()
|
|
param.grad.zero_()
|
|
|
|
####################
|
|
# Update Parameter #
|
|
####################
|
|
|
|
def step(self, closure=None):
|
|
assert closure is None, 'closure is not supported by step()'
|
|
|
|
# check for overflow
|
|
found_inf = self._check_overflow()
|
|
self.grad_scaler.update(found_inf)
|
|
|
|
# update loss scale if overflow occurs
|
|
if found_inf:
|
|
self._grad_store._averaged_gradients = dict()
|
|
self.zero_grad()
|
|
return
|
|
|
|
# copy the grad of fp16 param to fp32 param
|
|
single_grad_partition_groups = []
|
|
norm_groups = []
|
|
|
|
for group_id in range(self.num_param_groups):
|
|
# compute norm
|
|
norm_group = compute_norm(gradients=self._grad_store._averaged_gradients[group_id],
|
|
params=self._param_store.get_fp16_params_by_rank_group(group_id=group_id,
|
|
rank=self._local_rank),
|
|
dp_group=self._dp_group,
|
|
mp_group=self._mp_group)
|
|
norm_groups.append(norm_group)
|
|
|
|
# create flat gradient for the flat fp32 params
|
|
fp16_avg_grads = self._grad_store.get_averaged_gradients_by_group(group_id)
|
|
flat_fp16_avg_grads = flatten(fp16_avg_grads)
|
|
|
|
dtype = self._fp32_flat_param_groups_of_current_rank[group_id].dtype
|
|
flat_fp32_avg_grads = flat_fp16_avg_grads.to(dtype)
|
|
|
|
param_shape = self._fp32_flat_param_groups_of_current_rank[group_id].shape
|
|
assert param_shape == flat_fp32_avg_grads.shape, \
|
|
f'fp32 param and grad have different shape {param_shape} vs {flat_fp32_avg_grads.shape}'
|
|
|
|
single_grad_partition_groups.append(flat_fp32_avg_grads)
|
|
device = self._fp32_flat_param_groups_of_current_rank[group_id].device
|
|
self._fp32_flat_param_groups_of_current_rank[group_id].grad = flat_fp32_avg_grads.to(device)
|
|
self._grad_store._averaged_gradients[group_id] = []
|
|
self._grad_store._averaged_gradients[group_id] = []
|
|
|
|
# unscale and clip grads
|
|
global_norm = calculate_global_norm_from_list(norm_list=norm_groups)
|
|
self._unscale_and_clip_grads(single_grad_partition_groups, global_norm)
|
|
|
|
# update the parameters
|
|
self._optimizer.step()
|
|
# release the fp32 grad
|
|
release_param_grad(self._fp32_flat_param_groups_of_current_rank.values())
|
|
|
|
# update fp16 partition updated by the current rank
|
|
for group_id in range(len(self._fp16_param_groups)):
|
|
fp16_param = self._param_store.get_flat_fp16_param_by_rank_group(rank=self._local_rank, group_id=group_id)
|
|
fp32_param = self._fp32_flat_param_groups_of_current_rank[group_id].to(fp16_param.device)
|
|
fp16_param.data.copy_(fp32_param)
|
|
|
|
# broadcast the updated model weights
|
|
handles = []
|
|
for group_id in range(self.num_param_groups):
|
|
for rank in range(self._world_size):
|
|
fp16_param = self._param_store.get_flat_fp16_param_by_rank_group(rank=rank, group_id=group_id)
|
|
handle = dist.broadcast(fp16_param, src=rank, group=self._dp_group, async_op=True)
|
|
handles.append(handle)
|
|
|
|
for handle in handles:
|
|
handle.wait()
|
|
|
|
##################
|
|
# FP16 Utilities #
|
|
##################
|
|
|
|
def _check_overflow(self):
|
|
# clear previous overflow record
|
|
self._found_overflow.fill_(0.0)
|
|
|
|
# check for overflow
|
|
for group_id in range(len(self._fp16_param_groups)):
|
|
for avg_grad in self._grad_store.get_averaged_gradients_by_group(group_id):
|
|
if avg_grad is not None and has_inf_or_nan(avg_grad):
|
|
self._found_overflow.fill_(1.0)
|
|
break
|
|
|
|
# all-reduce across dp group
|
|
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._dp_group)
|
|
|
|
# all-reduce over model parallel group
|
|
if self._mp_group:
|
|
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._mp_group)
|
|
|
|
if self._found_overflow.item() > 0:
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def _unscale_and_clip_grads(self, grad_groups_flat, total_norm):
|
|
# compute combined scale factor for this group
|
|
combined_scale = self.loss_scale
|
|
|
|
if self._clip_grad_norm > 0.:
|
|
# norm is in fact norm*scale
|
|
clip = ((total_norm / self.loss_scale) + 1e-6) / self._clip_grad_norm
|
|
if clip > 1:
|
|
combined_scale = clip * self.loss_scale
|
|
|
|
for grad in grad_groups_flat:
|
|
grad.data.mul_(1. / combined_scale)
|
|
|
|
############################
|
|
# Gradient Synchronization #
|
|
############################
|
|
|
|
def sync_grad(self):
|
|
if not self._partition_grads:
|
|
self._reduce_grad_stage1()
|
|
else:
|
|
# TODO: support async comm in reduce
|
|
self._reduce_grad_stage2()
|
|
|
|
# update param already reduced flag
|
|
reduction_states = self._param_store.get_param_reduction_states()
|
|
for tensor, state in reduction_states.items():
|
|
reduction_states[tensor] = False
|
|
|
|
# clear reduced grads
|
|
if self._overlap_communication:
|
|
torch.cuda.synchronize()
|
|
self._param_store.clear_grads_of_previous_reduced_params()
|
|
|
|
# accumulate gradient
|
|
avg_gradients = self._grad_store._averaged_gradients
|
|
for group_id in range(self.num_param_groups):
|
|
param_group = self._param_store.get_fp16_params_by_rank_group(self._local_rank, group_id)
|
|
|
|
if group_id not in avg_gradients:
|
|
avg_gradients[group_id] = []
|
|
|
|
param_idx = 0
|
|
for param in param_group:
|
|
if param.grad is not None:
|
|
if len(avg_gradients[group_id]) == param_idx:
|
|
avg_gradients[group_id].append(param.grad)
|
|
else:
|
|
avg_gradients[group_id][param_idx].add_(param.grad)
|
|
param_idx += 1
|
|
|
|
# the gradients needed are stored in the avg_gradients buffer
|
|
# thus, can clear this
|
|
self.zero_grad()
|
|
|
|
def _reduce_grad_stage1(self):
|
|
# if not overlapping communication (no reduction hook is attached)
|
|
# we need to manually reduce these gradients
|
|
if not self._overlap_communication:
|
|
for group_id in range(len(self._fp16_param_groups)):
|
|
param_group = self._fp16_param_groups[group_id]
|
|
for param in param_group:
|
|
if param.grad is not None:
|
|
self._reduce_and_remove_grads_by_bucket(param)
|
|
|
|
# we need to reduce the gradients
|
|
# left in the communication bucket
|
|
self._reduce_grads_in_bucket()
|
|
|
|
def _reduce_grad_stage2(self):
|
|
# when partition_grads is True, reduction hooks
|
|
# are attached in the __init__ function, so we
|
|
# only need to reduce the gradients
|
|
# left in the communication bucket
|
|
for reduce_rank in range(self._world_size):
|
|
self._reduce_grads_in_bucket(reduce_rank)
|