mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
350 lines
14 KiB
350 lines
14 KiB
import argparse
|
|
import json
|
|
import math
|
|
import os
|
|
import resource
|
|
from contextlib import nullcontext
|
|
|
|
import torch
|
|
from coati.dataset import DataCollatorForSupervisedDataset, StatefulDistributedSampler, load_tokenized_dataset
|
|
from coati.models import convert_to_lora_module
|
|
from coati.trainer import SFTTrainer
|
|
from coati.utils import load_checkpoint
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
|
from colossalai.cluster import DistCoordinator
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
logger = get_dist_logger()
|
|
|
|
|
|
def train(args):
|
|
# check lora compatibility
|
|
if "gemini" in args.plugin and args.lora_rank > 0:
|
|
raise ValueError("LoRA is not supported in GeminiPlugin. Please use other plugin")
|
|
if args.plugin == "gemini_auto" and args.accumulation_steps > 1:
|
|
raise ValueError("Gradient accumulation is not supported in GeminiPlugin. Please use other plugin")
|
|
# ==============================
|
|
# Initialize Distributed Training
|
|
# ==============================
|
|
colossalai.launch_from_torch()
|
|
coordinator = DistCoordinator()
|
|
|
|
# ==============================
|
|
# Initialize Booster
|
|
# ==============================
|
|
init_ctx = nullcontext()
|
|
with init_ctx:
|
|
if args.use_flash_attn:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
args.pretrain,
|
|
torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16,
|
|
attn_implementation="flash_attention_2",
|
|
trust_remote_code=True,
|
|
)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
args.pretrain,
|
|
torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16,
|
|
trust_remote_code=True,
|
|
)
|
|
if args.lora_rank > 0:
|
|
model = convert_to_lora_module(model, args.lora_rank, lora_train_bias=args.lora_train_bias)
|
|
|
|
if args.plugin == "ddp":
|
|
"""
|
|
Default torch ddp plugin without any acceleration, for
|
|
debugging purpose acceleration, for debugging purpose
|
|
"""
|
|
plugin = TorchDDPPlugin(find_unused_parameters=True)
|
|
elif args.plugin == "gemini":
|
|
plugin = GeminiPlugin(
|
|
precision=args.mixed_precision,
|
|
placement_policy="static",
|
|
initial_scale=2**16,
|
|
max_norm=args.grad_clip,
|
|
enable_gradient_accumulation=True if args.accumulation_steps > 1 else False,
|
|
enable_flash_attention=args.use_flash_attn,
|
|
)
|
|
elif args.plugin == "gemini_auto":
|
|
plugin = GeminiPlugin(
|
|
precision=args.mixed_precision,
|
|
placement_policy="auto",
|
|
initial_scale=2**16,
|
|
max_norm=args.grad_clip,
|
|
enable_flash_attention=args.use_flash_attn,
|
|
)
|
|
elif args.plugin == "zero2":
|
|
plugin = LowLevelZeroPlugin(
|
|
stage=2,
|
|
precision=args.mixed_precision,
|
|
initial_scale=2**16,
|
|
max_norm=args.grad_clip,
|
|
)
|
|
elif args.plugin == "zero2_cpu":
|
|
plugin = LowLevelZeroPlugin(
|
|
stage=2,
|
|
precision=args.mixed_precision,
|
|
initial_scale=2**16,
|
|
cpu_offload=True,
|
|
max_norm=args.grad_clip,
|
|
)
|
|
elif args.plugin == "3d":
|
|
plugin = HybridParallelPlugin(
|
|
tp_size=args.tp,
|
|
pp_size=args.pp,
|
|
sp_size=args.sp,
|
|
sequence_parallelism_mode=args.sp_mode,
|
|
zero_stage=args.zero_stage,
|
|
enable_flash_attention=args.use_flash_attn,
|
|
enable_sequence_parallelism=args.enable_sequence_parallelism,
|
|
cpu_offload=True if args.zero_stage >= 1 and args.zero_cpu_offload else False,
|
|
parallel_output=False,
|
|
max_norm=args.grad_clip,
|
|
precision=args.mixed_precision,
|
|
microbatch_size=args.batch_size,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown plugin {args.plugin}")
|
|
|
|
booster = Booster(plugin=plugin)
|
|
|
|
# ======================================================
|
|
# Initialize Model, Objective, Optimizer and LR Scheduler
|
|
# ======================================================
|
|
# Temp Fix: Disable lazy init due to version conflict
|
|
# init_ctx = (
|
|
# LazyInitContext(default_device=get_current_device()) if isinstance(plugin, (GeminiPlugin,)) else nullcontext()
|
|
# )
|
|
|
|
if args.grad_checkpoint:
|
|
# Note, for some models, lora may not be compatible with gradient checkpointing
|
|
model.gradient_checkpointing_enable()
|
|
coordinator.print_on_master(msg="Gradient checkpointing enabled successfully")
|
|
|
|
# configure tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.tokenizer_dir or args.pretrain, use_fast=False, trust_remote_code=True
|
|
)
|
|
if hasattr(tokenizer, "pad_token") and hasattr(tokenizer, "eos_token") and tokenizer.eos_token is not None:
|
|
try:
|
|
# Some tokenizers doesn't allow to set pad_token mannually e.g., Qwen
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
except AttributeError as e:
|
|
logger.warning(f"Unable to set pad token to eos token, {str(e)}")
|
|
if not hasattr(tokenizer, "pad_token") or tokenizer.pad_token is None:
|
|
logger.warning(
|
|
"The tokenizer does not have a pad token which is required. May lead to unintended behavior in training, Please consider manually set them."
|
|
)
|
|
|
|
tokenizer.add_bos_token = False
|
|
tokenizer.add_eos_token = False
|
|
tokenizer.padding_side = "right"
|
|
|
|
coordinator.print_on_master(f"Configuration file will be saved at: {args.config_file}")
|
|
coordinator.print_on_master(f"Model checkpoint will be saved at: {args.save_path}")
|
|
|
|
# configure optimizer
|
|
optim = HybridAdam(
|
|
model_params=model.parameters(),
|
|
lr=args.lr,
|
|
betas=(0.9, 0.95),
|
|
weight_decay=args.weight_decay,
|
|
adamw_mode=True,
|
|
)
|
|
|
|
# configure dataset
|
|
coordinator.print_on_master(
|
|
f"Max CUDA memory before data loader: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
|
)
|
|
dataset = load_tokenized_dataset(dataset_paths=args.dataset, mode="train")
|
|
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_len)
|
|
|
|
train_dataloader = plugin.prepare_dataloader(
|
|
dataset=dataset,
|
|
batch_size=args.batch_size,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
collate_fn=data_collator,
|
|
distributed_sampler_cls=StatefulDistributedSampler,
|
|
)
|
|
|
|
eval_dataloader = None
|
|
if args.eval_dataset:
|
|
eval_dataset = load_tokenized_dataset(dataset_paths=args.eval_dataset, mode="dev")
|
|
eval_data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer, max_length=args.max_len)
|
|
|
|
eval_dataloader = plugin.prepare_dataloader(
|
|
dataset=eval_dataset,
|
|
batch_size=args.batch_size,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
collate_fn=eval_data_collator,
|
|
distributed_sampler_cls=StatefulDistributedSampler,
|
|
)
|
|
else:
|
|
logger.warning("No evaluation dataset is provided, skip evaluation")
|
|
|
|
coordinator.print_on_master(
|
|
f"Max CUDA memory after data loader: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
|
)
|
|
|
|
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
|
|
math.ceil(args.max_epochs * num_update_steps_per_epoch)
|
|
|
|
if args.warmup_steps is None:
|
|
args.warmup_steps = int(args.max_epochs * 0.025 * (len(train_dataloader) // args.accumulation_steps))
|
|
coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}")
|
|
|
|
lr_scheduler = CosineAnnealingWarmupLR(
|
|
optimizer=optim,
|
|
total_steps=args.max_epochs * num_update_steps_per_epoch,
|
|
warmup_steps=args.warmup_steps,
|
|
eta_min=0.1 * args.lr,
|
|
)
|
|
|
|
# Flash attention will be disabled because it does NOT support fp32.
|
|
default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16
|
|
torch.set_default_dtype(default_dtype)
|
|
model, optim, _, train_dataloader, lr_scheduler = booster.boost(
|
|
model=model,
|
|
optimizer=optim,
|
|
lr_scheduler=lr_scheduler,
|
|
dataloader=train_dataloader,
|
|
)
|
|
torch.set_default_dtype(torch.float)
|
|
|
|
coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB")
|
|
coordinator.print_on_master(
|
|
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
|
|
)
|
|
|
|
start_epoch = 0
|
|
sampler_start_idx = 0
|
|
start_step = 0
|
|
if args.checkpoint_path is not None:
|
|
if "modeling" in args.checkpoint_path:
|
|
coordinator.print_on_master(f"Continued pretrain from checkpoint {args.checkpoint_path}")
|
|
booster.load_model(model, args.checkpoint_path)
|
|
else:
|
|
coordinator.print_on_master(f"Load model checkpoint from {args.checkpoint_path}")
|
|
start_epoch, start_step, sampler_start_idx = load_checkpoint(
|
|
load_dir=args.checkpoint_path,
|
|
booster=booster,
|
|
model=model,
|
|
optimizer=optim,
|
|
lr_scheduler=lr_scheduler,
|
|
)
|
|
train_dataloader.sampler.set_start_index(start_index=sampler_start_idx)
|
|
|
|
coordinator.print_on_master(
|
|
f"Loaded checkpoint {args.checkpoint_path} at epoch {start_epoch} step {start_step}"
|
|
)
|
|
coordinator.print_on_master(f"Loaded sample at index {sampler_start_idx}")
|
|
|
|
coordinator.print_on_master(
|
|
f"Checkpoint loaded max CUDA memory: {torch.cuda.max_memory_allocated() / 1024 ** 2:.2f} MB"
|
|
)
|
|
coordinator.print_on_master(
|
|
f"Checkpoint loaded CUDA memory: {torch.cuda.memory_allocated() / 1024 ** 2:.2f} MB"
|
|
)
|
|
coordinator.print_on_master(
|
|
f"Checkpoint loaded max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
|
|
)
|
|
|
|
trainer = SFTTrainer(
|
|
model=model,
|
|
booster=booster,
|
|
optim=optim,
|
|
lr_scheduler=lr_scheduler,
|
|
max_epochs=args.max_epochs,
|
|
accumulation_steps=args.accumulation_steps,
|
|
start_epoch=start_epoch,
|
|
save_interval=args.save_interval,
|
|
save_dir=args.save_path,
|
|
coordinator=coordinator,
|
|
)
|
|
|
|
trainer.fit(
|
|
train_dataloader=train_dataloader,
|
|
eval_dataloader=eval_dataloader,
|
|
log_dir=args.log_dir,
|
|
use_wandb=args.use_wandb,
|
|
)
|
|
|
|
if args.lora_rank > 0 and args.merge_lora_weights:
|
|
from coati.models.lora import LORA_MANAGER
|
|
|
|
# NOTE: set model to eval to merge LoRA weights
|
|
LORA_MANAGER.merge_weights = True
|
|
model.eval()
|
|
# save model checkpoint after fitting on only rank0
|
|
coordinator.print_on_master("Start saving final model checkpoint")
|
|
|
|
booster.save_model(model, os.path.join(args.save_path, "modeling"), shard=True)
|
|
coordinator.print_on_master(f"Saved final model checkpoint at epoch {args.max_epochs} at folder {args.save_path}")
|
|
|
|
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# ==============================
|
|
# Parse Arguments
|
|
# ==============================
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--plugin",
|
|
type=str,
|
|
default="gemini",
|
|
choices=["gemini", "gemini_auto", "3d", "ddp", "zero2_cpu", "zero2"],
|
|
help="Choose which plugin to use",
|
|
)
|
|
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value")
|
|
parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay")
|
|
parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps")
|
|
parser.add_argument("--tp", type=int, default=1)
|
|
parser.add_argument("--pp", type=int, default=1)
|
|
parser.add_argument("--sp", type=int, default=1)
|
|
parser.add_argument("--enable_sequence_parallelism", default=False, action="store_true")
|
|
parser.add_argument("--zero_stage", type=int, default=0, help="Zero stage", choices=[0, 1, 2])
|
|
parser.add_argument("--zero_cpu_offload", default=False, action="store_true")
|
|
parser.add_argument("--sp_mode", type=str, default="split_gather", choices=["split_gather", "ring", "all_to_all"])
|
|
parser.add_argument("--pretrain", type=str, default=None)
|
|
parser.add_argument("--tokenizer_dir", type=str, default=None)
|
|
parser.add_argument("--dataset", nargs="+", default=[])
|
|
parser.add_argument("--eval_dataset", nargs="+", default=[])
|
|
parser.add_argument(
|
|
"--checkpoint_path", type=str, default=None, help="Checkpoint path if need to resume training form a checkpoint"
|
|
)
|
|
parser.add_argument("--save_path", type=str, default="output")
|
|
parser.add_argument("--max_epochs", type=int, default=3)
|
|
parser.add_argument("--batch_size", type=int, default=4)
|
|
parser.add_argument("--max_len", type=int, default=512)
|
|
parser.add_argument("--mixed_precision", type=str, default="bf16", choices=["fp16", "bf16"], help="Mixed precision")
|
|
parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank")
|
|
parser.add_argument(
|
|
"--lora_train_bias",
|
|
type=str,
|
|
default="none",
|
|
help="'none' means it doesn't train biases. 'all' means it trains all biases. 'lora_only' means it only trains biases of LoRA layers",
|
|
)
|
|
parser.add_argument("--save_interval", type=int, default=1000, help="number of step between two checkpoints")
|
|
parser.add_argument("--merge_lora_weights", type=bool, default=True)
|
|
parser.add_argument("--lr", type=float, default=5e-6)
|
|
parser.add_argument("--config_file", type=str, default="config_file", help="Config file")
|
|
parser.add_argument("--accumulation_steps", type=int, default=8)
|
|
parser.add_argument("--log_dir", default="logs", type=str)
|
|
parser.add_argument("--use_wandb", default=False, action="store_true")
|
|
parser.add_argument("--grad_checkpoint", default=False, action="store_true")
|
|
parser.add_argument("--use_flash_attn", default=False, action="store_true")
|
|
args = parser.parse_args()
|
|
os.makedirs(os.path.dirname(args.config_file), exist_ok=True)
|
|
with open(args.config_file, "w") as f:
|
|
json.dump(args.__dict__, f, indent=4)
|
|
train(args)
|