mirror of https://github.com/hpcaitech/ColossalAI
331 lines
19 KiB
Python
331 lines
19 KiB
Python
import torch.nn as nn
|
|
|
|
import colossalai.shardformer.layer as col_nn
|
|
|
|
from .._utils import getattr_, setattr_
|
|
from ..modeling.blip2 import (
|
|
forward_fn,
|
|
get_blip2_flash_attention_forward,
|
|
get_jit_fused_blip2_QFormer_output_forward,
|
|
get_jit_fused_blip2_QFormer_self_output_forward,
|
|
)
|
|
from ..modeling.jit import get_jit_fused_dropout_add_func
|
|
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
__all__ = ['BlipPolicy', 'BlipModelPolicy']
|
|
|
|
|
|
class BlipPolicy(Policy):
|
|
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
# reshape the embedding layer
|
|
r"""
|
|
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
|
"""
|
|
# TODO:
|
|
vocab_size = self.model.config.qformer_config.vocab_size
|
|
world_size = self.shard_config.tensor_parallel_size
|
|
if vocab_size % world_size != 0:
|
|
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
|
self.model.resize_token_embeddings(new_vocab_size)
|
|
return self.model
|
|
|
|
def module_policy(self):
|
|
from transformers.models.blip_2.modeling_blip_2 import (
|
|
Blip2Attention,
|
|
Blip2EncoderLayer,
|
|
Blip2QFormerLayer,
|
|
Blip2QFormerModel,
|
|
Blip2QFormerOutput,
|
|
Blip2QFormerSelfOutput,
|
|
Blip2VisionModel,
|
|
)
|
|
from transformers.models.opt.modeling_opt import OPTDecoderLayer, OPTForCausalLM
|
|
|
|
policy = {}
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
policy[Blip2EncoderLayer] = ModulePolicyDescription(attribute_replacement={
|
|
"self_attn.num_heads":
|
|
self.model.config.vision_config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
|
"self_attn.embed_dim":
|
|
self.model.config.vision_config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.qkv",
|
|
target_module=col_nn.FusedLinear1D_Col,
|
|
kwargs={
|
|
"n_fused": 3,
|
|
}),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.projection",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.fc1",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="mlp.fc2",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
])
|
|
|
|
policy[Blip2QFormerModel] = ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
])
|
|
|
|
policy[Blip2QFormerLayer] = ModulePolicyDescription(attribute_replacement={
|
|
"attention.attention.num_attention_heads":
|
|
self.model.config.qformer_config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
|
"attention.attention.all_head_size":
|
|
self.model.config.qformer_config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"crossattention.attention.num_attention_heads":
|
|
self.model.config.qformer_config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
|
"crossattention.attention.all_head_size":
|
|
self.model.config.qformer_config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="attention.attention.query",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="attention.attention.key",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="attention.attention.value",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="attention.attention.dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="attention.output.dense",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="attention.output.dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="crossattention.attention.query",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="crossattention.attention.key",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="crossattention.attention.value",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="crossattention.attention.dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="crossattention.output.dense",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="crossattention.output.dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="intermediate_query.dense",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="output_query.dense",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="output_query.dropout",
|
|
target_module=col_nn.DropoutForParallelInput,
|
|
)
|
|
])
|
|
|
|
policy[OPTDecoderLayer] = ModulePolicyDescription(attribute_replacement={
|
|
"self_attn.embed_dim":
|
|
self.model.config.text_config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"self_attn.num_heads":
|
|
self.model.config.text_config.num_attention_heads // self.shard_config.tensor_parallel_size
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.q_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.k_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.v_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.out_proj",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="fc1",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="fc2",
|
|
target_module=col_nn.Linear1D_Row,
|
|
)
|
|
])
|
|
|
|
policy[OPTForCausalLM] = ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="model.decoder.embed_tokens",
|
|
target_module=col_nn.VocabParallelEmbedding1D,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head",
|
|
target_module=col_nn.Linear1D_Col,
|
|
kwargs={"gather_output": True},
|
|
),
|
|
])
|
|
|
|
policy[Blip2Attention] = ModulePolicyDescription(method_replacement={"forward": forward_fn()})
|
|
|
|
# optimization configuration
|
|
if self.shard_config.enable_fused_normalization:
|
|
# Handle Blip2EncoderLayer layer
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="layer_norm1",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="layer_norm2",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
)
|
|
],
|
|
policy=policy,
|
|
target_key=Blip2EncoderLayer)
|
|
|
|
# handle Blip2VisionModel layer
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="post_layernorm",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
)
|
|
],
|
|
policy=policy,
|
|
target_key=Blip2VisionModel)
|
|
|
|
# handle Blip2VisionModel layer
|
|
self.append_or_create_submodule_replacement(
|
|
description=[SubModuleReplacementDescription(
|
|
suffix="layernorm",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
)],
|
|
policy=policy,
|
|
target_key=Blip2QFormerModel)
|
|
|
|
# handle Blip2QFormerLayer layer
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="attention.output.LayerNorm",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="crossattention.output.LayerNorm",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="output_query.LayerNorm",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
)
|
|
],
|
|
policy=policy,
|
|
target_key=Blip2QFormerLayer)
|
|
|
|
# handle OPTForCausalLM layer
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="model.decoder.final_layer_norm",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
)
|
|
],
|
|
policy=policy,
|
|
target_key=OPTForCausalLM)
|
|
|
|
# handle OPTDecoderLayer layer
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn_layer_norm",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="final_layer_norm",
|
|
target_module=col_nn.FusedLayerNorm,
|
|
)
|
|
],
|
|
policy=policy,
|
|
target_key=OPTDecoderLayer)
|
|
|
|
# use flash attention
|
|
if self.shard_config.enable_flash_attention:
|
|
policy[Blip2Attention] = ModulePolicyDescription(method_replacement={
|
|
'forward': get_blip2_flash_attention_forward(),
|
|
})
|
|
|
|
# use jit operator
|
|
if self.shard_config.enable_jit_fused:
|
|
policy[Blip2QFormerSelfOutput] = ModulePolicyDescription(
|
|
method_replacement={
|
|
'forward': get_jit_fused_blip2_QFormer_self_output_forward(),
|
|
'dropout_add': get_jit_fused_dropout_add_func(),
|
|
})
|
|
policy[Blip2QFormerOutput] = ModulePolicyDescription(method_replacement={
|
|
'forward': get_jit_fused_blip2_QFormer_output_forward(),
|
|
'dropout_add': get_jit_fused_dropout_add_func(),
|
|
})
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
binding_map = {
|
|
'language_model.model.decoder.embed_tokens': 'language_model.lm_head',
|
|
}
|
|
|
|
for k, v in binding_map.items():
|
|
src_mod = getattr_(self.model, k)
|
|
dst_mod = getattr_(self.model, v)
|
|
dst_mod.weight = src_mod.weight
|
|
|
|
return self.model
|
|
|
|
|
|
# Blip2Model
|
|
class Blip2ModelPolicy(BlipPolicy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
|
|
# Blip2ForConditionalGeneration
|
|
class Blip2ForConditionalGenerationPolicy(BlipPolicy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|