ColossalAI/colossalai/tensor/_ops/addmm.py

116 lines
5.3 KiB
Python

import torch
from typing import Union
from colossalai.tensor.op_wrapper import colo_op_impl
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input, reduce_grad
from colossalai.nn.layer.utils import divide
from colossalai.core import global_context as gpc
from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor, ShardPattern
from colossalai.tensor.graph import GraphOpNode, GraphGlobalEnv
def colo_addmm_1Drow(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Union[int, float],
alpha: Union[int, float]) -> ColoTensor:
parallel_action = mat2.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DRow_mm)
# mat1:S[1] x mat2:S[0] = Output:P
# beta * input + alpha * All-Reduce(Output) = res
# mat1:S[1]
if mat1.is_gathered():
# Not splited yet.
assert divide(mat1.shape[-1], gpc.tensor_parallel_size) == mat2.size(0), \
'Invalid shapes in 1Drow forward: mat1={}, mat2={}. Expected last dim of input {}.'.format(
mat1.shape, mat2.shape, mat2.size(0) * gpc.tensor_parallel_size)
input_per_partition = split_forward_gather_backward(mat1.torch_tensor(), parallel_action.parallel_mode, dim=-1)
elif mat1.shard_pattern == ShardPattern.Col:
# Splited by 1Dcol
assert mat1.shape[-1] == mat2.size(0), \
'Invalid shapes in 1Drow forward: mat1={}, mat2={}. Expected last dim of input {}.'.format(
mat1.shape, mat2.shape, mat2.size(0))
input_per_partition = mat1.torch_tensor()
else:
raise NotImplementedError
# Output:P
partial_output = torch.mm(input_per_partition, mat2.torch_tensor())
# Reduce(Output)
output = reduce_input(partial_output, parallel_action.parallel_mode)
# input
assert not input_tensor.has_spec(), 'Invalid input spec for 1Drow addmm op'
output = beta * input_tensor.torch_tensor() + alpha * output
output = ColoTensor.init_from_torch_tensor(output)
return output
def colo_addmm_1Dcol(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Union[int, float],
alpha: Union[int, float]) -> ColoTensor:
# mat1:B x mat2:S[1] + input:S[1] = Output:S[1]
# All-Gather(Output)
# mat1:B
parallel_action = mat2.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DCol_mm)
if mat1.is_gathered():
# Not splited yet.
assert mat1.shape[-1] == mat2.size(0), \
'Invalid shapes in 1Dcol forward: mat1={}, mat2={}. Expected last dim of input {}.'.format(
mat1.shape, mat2.shape, mat2.size(0))
input_parallel = reduce_grad(mat1.torch_tensor(), parallel_action.parallel_mode)
# input:S[1]
assert input_tensor.has_spec() and input_tensor.shard_spec.num_action == 1 and \
input_tensor.shard_pattern in [ShardPattern.Col, ShardPattern.Row], \
'Invalid bias spec for 1Dcol Linear op'
output_parallel = torch.addmm(input_tensor.torch_tensor(),
input_parallel,
mat2.torch_tensor(),
beta=beta,
alpha=alpha)
output = ColoTensor.init_from_torch_tensor(output_parallel)
out_parallel_action_list = [ParallelAction(priority=1, parallel_mode=parallel_action.parallel_mode)]
output_spec = TensorSpec(out_parallel_action_list)
output.set_spec(output_spec, shard=False)
output.set_shard_pattern(ShardPattern.Col)
if parallel_action.gather_out:
# All-Gather(Output)
output.gather()
return output
@colo_op_impl(torch.addmm)
def colo_addmm(types, args, kwargs, pg):
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
This method computes a linear.
"""
input_tensor, mat1, mat2 = tuple(
map(lambda t: t if isinstance(t, ColoTensor) else ColoTensor.init_from_torch_tensor(t), args[:3]))
beta = kwargs.get('beta', 1) if kwargs else 1
alpha = kwargs.get('alpha', 1) if kwargs else 1
# building the computing graph, inputs -> op
# if GraphGlobalEnv().graph_building:
# cur_op_node = GraphOpNode('linear', [weight, bias])
# cur_op_node.add_prev_tensor(input_tensor)
# Add communication logic before and after linear call.
ret_tensor = None
if not mat2.has_spec(): # No Model Parallel Applied
assert not input_tensor.has_spec(), 'Invalid input spec for native addmm op'
ret_tensor = ColoTensor.init_from_torch_tensor(
torch.addbmm(input_tensor.torch_tensor(), mat1.torch_tensor(), mat2.torch_tensor(), beta=beta, alpha=alpha))
elif mat2.shard_spec.num_action == 1: # Single Model Parallel Applied
compute_patterns = mat2.shard_spec.compute_patterns
if ComputePattern.TP1DRow_mm in compute_patterns:
ret_tensor = colo_addmm_1Drow(input_tensor, mat1, mat2, beta, alpha)
elif ComputePattern.TP1DCol_mm in compute_patterns:
ret_tensor = colo_addmm_1Dcol(input_tensor, mat1, mat2, beta, alpha)
else:
raise NotImplementedError
else:
raise NotImplementedError
# building the computing graph, op -> output
# if GraphGlobalEnv().graph_building:
# cur_op_node.add_post_tensor(ret_tensor)
return ret_tensor