ColossalAI/colossalai/fx/profiler/profiler.py

192 lines
6.4 KiB
Python

from typing import Callable, Any, Dict, Tuple
import torch
from torch.fx import Graph
from torch.fx.node import Argument, Target
from torch.utils._pytree import tree_map
from .memory import activation_size, INPLACE_ATEN, WEIRD_OPS
from .tensor import MetaTensor
from .opcount import flop_mapping
__all__ = ['profile_function', 'profile_module', 'profile_method', '_profile']
def normalize_tuple(x):
if not isinstance(x, tuple):
return (x,)
return x
def is_autogradable(x):
return isinstance(x, torch.Tensor) and x.is_floating_point()
def _profile(target: Callable, *args, **kwargs) -> Tuple[Any, ...]:
"""Profile a Callable function with args and kwargs.
Args:
target (Callable): A Callable function
args (Any): Argument
kwargs (Any): Argument
Returns:
out (Tuple[Any, ...]): The argument value that was retrieved
flop_count (Tuple[int, ...]): The flop count for (fwd_flop, bwd_flop).
mem_stat (Tuple[int, ...]): The memory statistics for (fwd_tmp, fwd_out, bwd_tmp, bwd_out)
"""
flop_count = {
'f': 0,
'l': 0,
'b': 0,
}
temp = {
'f': [],
'l': [],
'b': [],
}
stage = 'f'
class FlopTensor(MetaTensor):
def __repr__(self):
if self.grad_fn:
return f"FlopTensor(..., device={self._tensor.device}, size={tuple(self.shape)}, grad_fn={self.grad_fn})"
return f"FlopTensor(..., device={self._tensor.device}, size={tuple(self.shape)})"
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(x):
if isinstance(x, torch.Tensor) and not hasattr(x, '_tensor'):
x = FlopTensor(x.to('meta'))
return x._tensor.to('meta') if isinstance(x, FlopTensor) else x
def to_meta(x):
return x.to('meta') if isinstance(x, torch.Tensor) else x
args = tree_map(unwrap, args)
kwargs = tree_map(unwrap, kwargs)
# run aten for backend=CPU but actually on backend=Meta
out = func(*args, **kwargs)
flop_count[stage] += flop_mapping[func](args, normalize_tuple(out))
if func not in INPLACE_ATEN:
temp[stage].append(tree_map(to_meta, normalize_tuple(out)))
def wrap(x):
return FlopTensor(x.to('meta')) if isinstance(x, torch.Tensor) else x
return tree_map(wrap, out)
if target not in WEIRD_OPS:
def wrap(x):
return FlopTensor(
x.detach().requires_grad_(True)) if is_autogradable(x) and not hasattr(x, '_tensor') else x
else:
def wrap(x):
return FlopTensor(
x.detach().requires_grad_(False)) if is_autogradable(x) and not hasattr(x, '_tensor') else x
args = tree_map(wrap, args)
kwargs = tree_map(wrap, kwargs)
if isinstance(target, str):
# args[0] is the `self` object for this method call
self_obj, *args_tail = args
out = getattr(self_obj, target)(*args_tail, **kwargs)
else:
out = target(*args, **kwargs)
if is_autogradable(out) and out.requires_grad:
stage = 'l'
loss = out.sum()
stage = 'b'
loss.backward()
fwd_flop = flop_count['f']
bwd_flop = flop_count['b']
fwd_tmp = max(map(activation_size, temp['f'][:-1])) if len(temp['f'][:-1]) else 0
fwd_out = activation_size(temp['f'][-1]) if len(temp['f']) else 0
bwd_tmp = max(map(activation_size, temp['b'])) if len(temp['b']) else 0
def unwrap(x):
return x._tensor.to('meta') if isinstance(x, FlopTensor) else x
return tree_map(unwrap, out), (fwd_flop, bwd_flop), (fwd_tmp, fwd_out, bwd_tmp, 0)
def profile_function(target: 'Target') -> Callable:
"""
Wrap a `call_function` node or `torch.nn.functional` in order to
record the memory cost and FLOPs of the execution.
Warnings:
You may only use tensors with `device=meta` for this wrapped function.
Only original `torch.nn.functional` are available.
Examples:
>>> input = torch.rand(100, 100, 100, 100, device='meta')
>>> func = torch.nn.functional.relu
>>> output, (fwd_flop, bwd_flop), (fwd_tmp, fwd_out, bwd_tmp, bwd_out) = profile_function(func)(input, inplace=False)
"""
def f(*args: Tuple[Argument, ...], **kwargs: Dict[str, Any]) -> Any:
if kwargs.get('inplace', False):
args = tree_map(lambda x: x.to('meta') if isinstance(x, torch.Tensor) else x, args)
kwargs = tree_map(lambda x: x.to('meta') if isinstance(x, torch.Tensor) else x, kwargs)
out = func(*args, **kwargs)
return out, (0, 0), (0, 0, 0, 0)
out, flop_count, mem_stat = _profile(func, *args, **kwargs)
return out, flop_count, mem_stat
f.__name__ = target.__name__
func = target
return f
def profile_method(target: 'Target') -> Callable:
"""
Wrap a `call_method` node
record the memory cost and FLOPs of the execution.
"""
def f(*args: Tuple[Argument, ...], **kwargs: Dict[str, Any]) -> Any:
# execute the method and return the result
assert isinstance(target, str), f'{target} instance is not str.'
out, flop_count, mem_stat = _profile(target, *args, **kwargs)
return out, flop_count, mem_stat
return f
def profile_module(module: torch.nn.Module) -> Callable:
"""
Wrap a `call_module` node or `torch.nn` in order to
record the memory cost and FLOPs of the execution.
Warnings:
You may only use tensors with `device=meta` for this wrapped function.
Only original `torch.nn` are available.
Example:
>>> input = torch.rand(4, 3, 224, 224, device='meta')
>>> mod = torch.nn.Conv2d(3, 128, 3)
>>> output, (fwd_flop, bwd_flop), (fwd_tmp, fwd_out, bwd_tmp, bwd_out) = profile_module(mod)(input)
"""
def f(*args: Tuple[Argument, ...], **kwargs: Dict[str, Any]) -> Any:
if getattr(module, 'inplace', False):
args = tree_map(lambda x: x.to('meta'), args)
kwargs = tree_map(lambda x: x.to('meta'), kwargs)
out = func(*args, **kwargs)
return out, (out.numel(), out.numel()), (0, 0, 0, 0)
out, flop_count, mem_stat = _profile(func, *args, **kwargs)
return out, flop_count, mem_stat
f.__name__ = module.__class__.__name__
func = module.forward
return f