mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
6.2 KiB
174 lines
6.2 KiB
from contextlib import nullcontext |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.distributed as dist |
|
|
|
import colossalai |
|
from colossalai.booster import Booster |
|
from colossalai.booster.plugin import GeminiPlugin |
|
from colossalai.fx import is_compatible_with_meta |
|
from colossalai.lazy.lazy_init import LazyInitContext |
|
from colossalai.nn.optimizer import HybridAdam |
|
from colossalai.tensor.colo_parameter import ColoParameter |
|
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn |
|
from tests.kit.model_zoo import COMMON_MODELS, IS_FAST_TEST, model_zoo |
|
|
|
|
|
@clear_cache_before_run() |
|
def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn, zero_size, tp_size) -> Optional[str]: |
|
try: |
|
if init_method == "lazy": |
|
ctx = LazyInitContext() |
|
else: |
|
ctx = nullcontext() |
|
extra_dp_size = dist.get_world_size() // (zero_size * tp_size) |
|
enable_all_optimization = True if tp_size > 1 else False |
|
plugin = GeminiPlugin( |
|
max_norm=1.0, |
|
initial_scale=2**5, |
|
tp_size=tp_size, |
|
extra_dp_size=extra_dp_size, |
|
enable_all_optimization=enable_all_optimization, |
|
) |
|
booster = Booster(plugin=plugin) |
|
with ctx: |
|
model = model_fn() |
|
optimizer = HybridAdam(model.parameters(), lr=1e-3) |
|
criterion = lambda x: x.mean() |
|
data = data_gen_fn() |
|
|
|
data = { |
|
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items() |
|
} |
|
|
|
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) |
|
|
|
for n, p in model.named_parameters(): |
|
assert isinstance(p, ColoParameter), f"{n} is not a ColoParameter" |
|
|
|
output = model(**data) |
|
output = output_transform_fn(output) |
|
output_key = list(output.keys())[0] |
|
loss = criterion(output[output_key]) |
|
|
|
booster.backward(loss, optimizer) |
|
optimizer.step() |
|
|
|
except NotImplementedError: |
|
print(f"Tensor Parallelism policy for {model.__class__} is not implemented yet\n.") |
|
except Exception as e: |
|
# raise e |
|
return repr(e) |
|
|
|
|
|
# TODO(ver217): CI does not support lazy now |
|
# @parameterize('init_method', ['lazy', 'none', 'colo']) |
|
|
|
|
|
@parameterize("subset", [COMMON_MODELS] if IS_FAST_TEST else ["torchvision", "transformers", "diffusers"]) |
|
@parameterize("init_method", ["none"]) |
|
@parameterize("zero_size", [2]) |
|
@parameterize("tp_size", [2]) |
|
def check_gemini_plugin( |
|
subset: str, init_method: str = "none", early_stop: bool = True, zero_size: int = 1, tp_size: int = 1 |
|
): |
|
"""check gemini plugin over model zoo |
|
|
|
Args: |
|
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True. |
|
""" |
|
is_support_meta = is_compatible_with_meta() |
|
if not is_support_meta and init_method == "lazy": |
|
return |
|
|
|
passed_models = [] |
|
failed_info = {} # (model_name, error) pair |
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, _, _) in model_zoo.get_sub_registry(subset).items(): |
|
# These models lead to CUDA error |
|
if name in ( |
|
"diffusers_auto_encoder_kl", |
|
"diffusers_vq_model", |
|
"diffusers_unet2d_model", |
|
"timm_resmlp", |
|
"timm_gmixer_12_224", |
|
"timm_gmlp_b16_224", |
|
"timm_mixer_b16_224", |
|
"timm_convnext", |
|
"torchvision_convnext_base", |
|
): |
|
continue |
|
# These models are not compatible with gemini |
|
if name in [ |
|
"timm_convit", |
|
"timm_dm_nfnet", |
|
"torchvision_vit_b_16", |
|
"transformers_t5", |
|
"transformers_t5_for_conditional_generation", |
|
"transformers_t5_encoder_model", # does not support apex rmsnorm |
|
"transformers_chatglm", |
|
"transformers_sam", |
|
"transformers_vit", |
|
"transformers_gpt_double_heads", # TODO check why does the model fail to run using Gemini |
|
"transformers_falcon", # TODO check why falcon fails to run Gemini |
|
"transformers_falcon_for_causal_lm", |
|
"transformers_falcon_for_sequence_classification", |
|
"transformers_falcon_for_token_classification", |
|
"transformers_falcon_for_question_answering", |
|
"transformers_gptj_lm", # lead to OOM when running in ci |
|
"transformers_gptj_for_question_answering", |
|
"transformers_gptj_for_sequence_classification", |
|
]: |
|
continue |
|
|
|
if init_method == "lazy" and name in [ |
|
"timm_convmixer", |
|
"timm_vision_transformer", |
|
"timm_deit", |
|
"timm_deit3", |
|
"timm_inception_v3", |
|
"timm_tnt_b_patch16_224", |
|
"timm_rexnet", |
|
"torchvision_densenet121", |
|
"torchvision_efficientnet_b0", |
|
"torchvision_mobilenet_v2", |
|
"torchvision_mnasnet0_5", |
|
"torchvision_regnet_x_16gf", |
|
"torchvision_shufflenet_v2_x0_5", |
|
"torchvision_efficientnet_v2_s", |
|
]: |
|
continue |
|
|
|
# TODO debug blip2 when using tp, something wrong with shift_logits's shape |
|
if "transformers_blip2" in name: |
|
tp_size = 1 |
|
|
|
err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn, zero_size, tp_size) |
|
if err is None: |
|
passed_models.append(name) |
|
else: |
|
failed_info[name] = err |
|
if early_stop: |
|
break |
|
|
|
if dist.get_rank() == 0: |
|
print(f"Init method: {init_method}") |
|
print(f"Passed models({len(passed_models)}): {passed_models}\n\n") |
|
print(f"Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n") |
|
assert len(failed_info) == 0, "\n".join([f"{k}: {v}" for k, v in failed_info.items()]) |
|
|
|
|
|
def run_dist(rank, world_size, port, early_stop: bool = True): |
|
# init dist env |
|
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost") |
|
check_gemini_plugin(early_stop=early_stop) |
|
|
|
|
|
@rerun_if_address_is_in_use() |
|
def test_gemini_plugin(early_stop: bool = True): |
|
spawn(run_dist, 4, early_stop=early_stop) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_gemini_plugin(early_stop=False)
|
|
|