mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
2.5 KiB
94 lines
2.5 KiB
from typing import Callable, Dict, Iterator, List, Tuple, Union |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from torch.optim import Optimizer |
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler |
|
from torch.utils.data import DataLoader, TensorDataset |
|
|
|
import colossalai |
|
from colossalai.booster.plugin.dp_plugin_base import DPPluginBase |
|
from colossalai.checkpoint_io import CheckpointIO |
|
from colossalai.interface import OptimizerWrapper |
|
from colossalai.testing import rerun_if_address_is_in_use, spawn |
|
|
|
|
|
class DPPluginWrapper(DPPluginBase): |
|
"""This is a wrapper class for testing DP plugin initialization and dataloader creation.""" |
|
|
|
def configure( |
|
self, |
|
model: nn.Module, |
|
optimizer: Optimizer, |
|
criterion: Callable = None, |
|
dataloader: DataLoader = None, |
|
lr_scheduler: LRScheduler = None, |
|
) -> Tuple[Union[nn.Module, OptimizerWrapper, LRScheduler, DataLoader]]: |
|
pass |
|
|
|
def control_checkpoint_io(self) -> bool: |
|
pass |
|
|
|
def control_device(self) -> bool: |
|
pass |
|
|
|
def control_precision(self) -> bool: |
|
pass |
|
|
|
def get_checkpoint_io(self) -> CheckpointIO: |
|
pass |
|
|
|
def support_no_sync(self) -> bool: |
|
pass |
|
|
|
def supported_devices(self) -> List[str]: |
|
pass |
|
|
|
def supported_precisions(self) -> List[str]: |
|
pass |
|
|
|
def no_sync(self, model: nn.Module) -> Iterator[None]: |
|
pass |
|
|
|
def enable_lora(self, model: nn.Module, pretrained_dir: str, lora_config: Dict) -> nn.Module: |
|
pass |
|
|
|
def support_lora(self) -> bool: |
|
pass |
|
|
|
|
|
def check_dataloader_sharding(): |
|
plugin = DPPluginWrapper() |
|
|
|
# create a custom dataset with 0 to 10 |
|
dataset = TensorDataset(torch.arange(0, 10)) |
|
train_dataloader = plugin.prepare_dataloader(dataset, batch_size=2) |
|
|
|
# get the first batch of data |
|
batch = next(iter(train_dataloader))[0].cuda() |
|
is_rank_0 = dist.get_rank() == 0 |
|
|
|
if is_rank_0: |
|
batch_to_compare = batch.clone() |
|
else: |
|
batch_to_compare = batch |
|
# pass to the rank 1 value to rank 0 |
|
dist.broadcast(batch_to_compare, src=1) |
|
|
|
# compare on rank 0 |
|
if is_rank_0: |
|
assert not torch.equal( |
|
batch, batch_to_compare |
|
), "Same number was found across ranks but expected it to be different" |
|
|
|
|
|
def run_dist(rank, world_size, port): |
|
# init dist env |
|
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost") |
|
check_dataloader_sharding() |
|
|
|
|
|
@rerun_if_address_is_in_use() |
|
def test_dp_plugin_dataloader(): |
|
spawn(run_dist, 2)
|
|
|