mirror of https://github.com/hpcaitech/ColossalAI
362 lines
15 KiB
Python
362 lines
15 KiB
Python
import warnings
|
|
from functools import partial
|
|
from typing import Callable, Dict, List, Union
|
|
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from torch.nn import Module
|
|
from transformers.models.mixtral.modeling_mixtral import MixtralForCausalLM, MixtralModel
|
|
|
|
from colossalai.shardformer.layer import FusedRMSNorm, Linear1D_Col
|
|
from colossalai.shardformer.layer.embedding import PaddingEmbedding, VocabParallelEmbedding1D
|
|
from colossalai.shardformer.layer.linear import Linear1D_Row
|
|
from colossalai.shardformer.modeling.mixtral import (
|
|
EPMixtralSparseMoeBlock,
|
|
MixtralPipelineForwards,
|
|
get_mixtral_flash_attention_forward,
|
|
get_mixtral_flash_attention_model_forward,
|
|
)
|
|
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
__all__ = ["MixtralPolicy", "MixtralForCausalLMPolicy"]
|
|
|
|
|
|
class MixtralPolicy(Policy):
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
self.tie_weight = self.tie_weight_check()
|
|
self.origin_attn_implement = self.model.config._attn_implementation
|
|
return self.model
|
|
|
|
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
|
|
from transformers.models.mixtral.modeling_mixtral import (
|
|
MixtralAttention,
|
|
MixtralDecoderLayer,
|
|
MixtralFlashAttention2,
|
|
MixtralModel,
|
|
MixtralSdpaAttention,
|
|
)
|
|
|
|
ATTN_IMPLEMENTATION = {
|
|
"eager": MixtralAttention,
|
|
"flash_attention_2": MixtralFlashAttention2,
|
|
"sdpa": MixtralSdpaAttention,
|
|
}
|
|
policy = {}
|
|
attn_cls = ATTN_IMPLEMENTATION[self.origin_attn_implement]
|
|
|
|
sp_mode = self.shard_config.sequence_parallelism_mode or None
|
|
sp_size = self.shard_config.sequence_parallel_size or None
|
|
sp_group = self.shard_config.sequence_parallel_process_group or None
|
|
sp_partial_derived = sp_mode in ["split_gather", "ring"]
|
|
if sp_mode == "all_to_all":
|
|
decoder_attribute_replacement = {
|
|
"num_heads": self.model.config.num_attention_heads // sp_size,
|
|
}
|
|
if getattr(self.model.config, "num_key_value_heads", False):
|
|
decoder_attribute_replacement["num_key_value_heads"] = self.model.config.num_key_value_heads // sp_size
|
|
|
|
policy[attn_cls] = ModulePolicyDescription(
|
|
attribute_replacement=decoder_attribute_replacement,
|
|
)
|
|
if self.shard_config.enable_sequence_parallelism:
|
|
if self.pipeline_stage_manager is not None:
|
|
# NOTE: we are replacing model forward for both sequence parallelism and pipeline parallelism
|
|
# if both are enabled, one of them will be ignored
|
|
raise NotImplementedError("Sequence parallelism is not supported with pipeline parallelism.")
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_mixtral_flash_attention_forward(self.shard_config, sp_mode, sp_size, sp_group),
|
|
},
|
|
policy=policy,
|
|
target_key=attn_cls,
|
|
)
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_mixtral_flash_attention_model_forward(
|
|
self.shard_config,
|
|
sp_mode=sp_mode,
|
|
sp_size=sp_size,
|
|
sp_group=sp_group,
|
|
),
|
|
},
|
|
policy=policy,
|
|
target_key=MixtralModel,
|
|
)
|
|
|
|
embedding_cls = None
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
embedding_cls = VocabParallelEmbedding1D
|
|
else:
|
|
if self.tie_weight:
|
|
embedding_cls = PaddingEmbedding
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
# tensor parallelism for non-moe params
|
|
assert (
|
|
self.model.config.num_attention_heads % self.shard_config.tensor_parallel_size == 0
|
|
), f"The number of attention heads must be divisible by tensor parallel size."
|
|
assert (
|
|
self.model.config.num_key_value_heads % self.shard_config.tensor_parallel_size == 0
|
|
), f"The number of key_value heads must be divisible by tensor parallel size."
|
|
decoder_attribute_replacement = {
|
|
"self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
|
|
"self_attn.num_key_value_heads": self.model.config.num_key_value_heads
|
|
// self.shard_config.tensor_parallel_size,
|
|
}
|
|
|
|
policy[MixtralDecoderLayer] = ModulePolicyDescription(
|
|
attribute_replacement=decoder_attribute_replacement,
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.q_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.k_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.v_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.o_proj",
|
|
target_module=Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription( # or replicate?
|
|
suffix="block_sparse_moe.gate", target_module=Linear1D_Col, kwargs={"gather_output": True}
|
|
),
|
|
],
|
|
)
|
|
|
|
if embedding_cls is not None:
|
|
self.append_or_create_submodule_replacement(
|
|
description=SubModuleReplacementDescription(
|
|
suffix="embed_tokens",
|
|
target_module=embedding_cls,
|
|
kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by},
|
|
),
|
|
policy=policy,
|
|
target_key=MixtralModel,
|
|
)
|
|
|
|
if self.shard_config.ep_group:
|
|
# expert parallel
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="block_sparse_moe",
|
|
target_module=EPMixtralSparseMoeBlock,
|
|
kwargs={
|
|
"ep_group": self.shard_config.ep_group,
|
|
"tp_group": self.shard_config.tensor_parallel_process_group,
|
|
"moe_dp_group": self.shard_config.moe_dp_group,
|
|
},
|
|
)
|
|
],
|
|
policy=policy,
|
|
target_key=MixtralDecoderLayer,
|
|
)
|
|
|
|
# optimization configuration
|
|
if self.shard_config.enable_fused_normalization:
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="input_layernorm",
|
|
target_module=FusedRMSNorm,
|
|
kwargs={"sp_partial_derived": sp_partial_derived},
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="post_attention_layernorm",
|
|
target_module=FusedRMSNorm,
|
|
kwargs={"sp_partial_derived": sp_partial_derived},
|
|
),
|
|
],
|
|
policy=policy,
|
|
target_key=MixtralDecoderLayer,
|
|
)
|
|
|
|
self.append_or_create_submodule_replacement(
|
|
description=SubModuleReplacementDescription(
|
|
suffix="norm",
|
|
target_module=FusedRMSNorm,
|
|
kwargs={"sp_partial_derived": sp_partial_derived},
|
|
),
|
|
policy=policy,
|
|
target_key=MixtralModel,
|
|
)
|
|
|
|
if self.shard_config.enable_flash_attention:
|
|
warnings.warn("Flash attention is natively supported in transformers, will ignore the flag.")
|
|
self.shard_config.enable_flash_attention = False
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
|
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
|
to customized forward method, and add this changing to policy."""
|
|
if self.pipeline_stage_manager:
|
|
if self.shard_config.enable_sequence_parallelism:
|
|
# NOTE: we are replacing model forward for both sequence parallelism and pipeline parallelism
|
|
# if both are enabled, one of them will be ignored
|
|
raise NotImplementedError("Pipeline parallelism is not supported with sequence parallelism.")
|
|
stage_manager = self.pipeline_stage_manager
|
|
if self.model.__class__.__name__ == "MixtralModel":
|
|
module = self.model
|
|
else:
|
|
module = self.model.model
|
|
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
|
|
stage_index = stage_manager.get_stage_index(layers_per_stage)
|
|
method_replacement = {"forward": partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
|
|
self.append_or_create_method_replacement(
|
|
description=method_replacement, policy=policy, target_key=model_cls
|
|
)
|
|
|
|
return
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
assert self.pipeline_stage_manager is not None
|
|
|
|
if self.model.__class__.__name__ == "MixtralModel":
|
|
module = self.model
|
|
else:
|
|
module = self.model.model
|
|
stage_manager = self.pipeline_stage_manager
|
|
|
|
held_layers = []
|
|
layers_per_stage = stage_manager.distribute_layers(len(module.layers))
|
|
if stage_manager.is_first_stage():
|
|
held_layers.append(module.embed_tokens)
|
|
start_idx, end_idx = stage_manager.get_stage_index(layers_per_stage)
|
|
held_layers.extend(module.layers[start_idx:end_idx])
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(module.norm)
|
|
|
|
return held_layers
|
|
|
|
|
|
class MixtralModelPolicy(MixtralPolicy):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
policy = super().module_policy()
|
|
if self.pipeline_stage_manager:
|
|
# set None as default
|
|
self.set_pipeline_forward(
|
|
model_cls=MixtralModel,
|
|
new_forward=MixtralPipelineForwards.mixtral_model_forward,
|
|
policy=policy,
|
|
)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
held_layers = super().get_held_layers()
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in mixtral model"""
|
|
return []
|
|
|
|
|
|
class MixtralForCausalLMPolicy(MixtralPolicy):
|
|
def module_policy(self):
|
|
policy = super().module_policy()
|
|
# TODO: assign pg mesh from plugin to all modules
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
# add a new item for casual lm
|
|
new_item = {
|
|
MixtralForCausalLM: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head",
|
|
target_module=Linear1D_Col,
|
|
kwargs=dict(gather_output=True),
|
|
)
|
|
]
|
|
)
|
|
}
|
|
policy.update(new_item)
|
|
|
|
if self.pipeline_stage_manager:
|
|
# set None as default
|
|
self.set_pipeline_forward(
|
|
model_cls=MixtralForCausalLM,
|
|
new_forward=MixtralPipelineForwards.mixtral_for_causal_lm_forward,
|
|
policy=policy,
|
|
)
|
|
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(self.model.lm_head)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
mixtral_model = self.model.model
|
|
if self.pipeline_stage_manager and self.pipeline_stage_manager.num_stages > 1:
|
|
if (
|
|
id(mixtral_model.embed_tokens.weight) == id(self.model.lm_head.weight)
|
|
and self.pipeline_stage_manager.num_stages > 1
|
|
):
|
|
# tie weights
|
|
return [
|
|
{
|
|
0: mixtral_model.embed_tokens.weight,
|
|
self.pipeline_stage_manager.num_stages - 1: self.model.lm_head.weight,
|
|
}
|
|
]
|
|
return []
|
|
|
|
|
|
class MixtralForSequenceClassificationPolicy(MixtralPolicy):
|
|
def module_policy(self):
|
|
from transformers import MixtralForSequenceClassification
|
|
|
|
policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
# add a new item for sequence classification
|
|
new_item = {
|
|
MixtralForSequenceClassification: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="score", target_module=Linear1D_Col, kwargs=dict(gather_output=True)
|
|
)
|
|
]
|
|
)
|
|
}
|
|
policy.update(new_item)
|
|
|
|
if self.pipeline_stage_manager:
|
|
raise NotImplementedError
|
|
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_last_stage(ignore_chunk=True):
|
|
held_layers.append(self.model.score)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"""No shared params in mixtral for sequence classification model"""
|
|
return []
|