mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
394 lines
16 KiB
394 lines
16 KiB
#!/usr/bin/env python |
|
# -*- encoding: utf-8 -*- |
|
|
|
from typing import Callable, List, Optional, Union |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from torch.distributed import ProcessGroup |
|
|
|
from colossalai.lazy import LazyInitContext |
|
from colossalai.nn import init as init |
|
from colossalai.nn.layer.utils import divide |
|
from colossalai.tensor.d_tensor.api import ( |
|
is_distributed_tensor, |
|
shard_colwise, |
|
shard_rowwise, |
|
sharded_tensor_to_existing_param, |
|
) |
|
|
|
from ._operation import gather_forward_split_backward, reduce_forward |
|
from .parallel_module import PaddingParallelModule, ParallelModule |
|
from .utils import create_randomizer_with_offset |
|
|
|
__all__ = ["Embedding1D", "VocabParallelEmbedding1D", "PaddingEmbedding"] |
|
|
|
|
|
class Embedding1D(ParallelModule): |
|
r"""Embedding for 1D parallelism. |
|
|
|
Args: |
|
num_embeddings (int): number of embeddings. |
|
embedding_dim (int): dimension of embedding. |
|
padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient; |
|
therefore, the embedding vector at padding_idx is not updated during training, |
|
i.e. it remains as a fixed “pad”, defaults to None. |
|
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. |
|
weight_initializer (:class:`typing.Callable`, optional): |
|
he initializer of weight, defaults to normal initializer. |
|
|
|
The ``args`` and ``kwargs`` used in :class:`torch.nn.functional.embedding` should contain: |
|
:: |
|
|
|
max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is |
|
renormalized to have norm max_norm. Note: this will modify weight in-place. |
|
norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2. |
|
scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse |
|
of frequency of the words in the mini-batch. Default False. |
|
sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False. |
|
|
|
More details about ``args`` and ``kwargs`` could be found in |
|
`Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_. |
|
|
|
More details about ``initializer`` please refer to |
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_embeddings: int, |
|
embedding_dim: int, |
|
padding_idx: int = None, |
|
dtype: torch.dtype = None, |
|
device: torch.device = None, |
|
process_group: ProcessGroup = None, |
|
gather_output: bool = True, |
|
weight: Optional[nn.Parameter] = None, |
|
weight_initializer: Callable = init.normal_(), |
|
*args, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.num_embeddings = num_embeddings |
|
self.embedding_dim = embedding_dim |
|
self.process_group = process_group |
|
|
|
self.padding_idx = padding_idx |
|
self.embed_args = args |
|
self.embed_kwargs = kwargs |
|
self.gather_output = gather_output |
|
|
|
# offset the seed with randomizer index and rank |
|
seed = torch.random.initial_seed() |
|
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group) |
|
|
|
# Parameters. |
|
if weight is None: |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
self.weight = nn.Parameter(torch.empty((num_embeddings, self.embedding_dim), **factory_kwargs)) |
|
else: |
|
weight.data = weight.data.to(device=device, dtype=dtype) |
|
self.weight = weight |
|
if not is_distributed_tensor(self.weight): |
|
sharded_weight = shard_colwise(self.weight.data, process_group) |
|
sharded_tensor_to_existing_param(sharded_weight, self.weight) |
|
|
|
if weight is None: |
|
with self.randomizer.fork_rng(enable_cpu=True): |
|
self.reset_parameters(weight_initializer) |
|
|
|
@staticmethod |
|
def from_native_module( |
|
module: nn.Embedding, process_group: Union[ProcessGroup, List[ProcessGroup]] = None, *args, **kwargs |
|
) -> "Embedding1D": |
|
r""" |
|
Build a 1D parallelized Embedding from a native nn.Embedding module. |
|
""" |
|
LazyInitContext.materialize(module) |
|
# get the attributes |
|
num_embedding = module.num_embeddings |
|
embedding_dim = module.embedding_dim |
|
padding_idx = module.padding_idx |
|
max_norm = module.max_norm |
|
norm_type = module.norm_type |
|
scale_grad_by_freq = module.scale_grad_by_freq |
|
sparse = module.sparse |
|
dtype = module.weight.dtype |
|
device = module.weight.device |
|
|
|
# sparse is not support yet |
|
if sparse: |
|
raise NotImplementedError("The Embedding1D module does not support sparse embedding yet.") |
|
|
|
embedding = Embedding1D( |
|
num_embeddings=num_embedding, |
|
embedding_dim=embedding_dim, |
|
padding_idx=padding_idx, |
|
process_group=process_group, |
|
dtype=dtype, |
|
device=device, |
|
max_norm=max_norm, |
|
norm_type=norm_type, |
|
scale_grad_by_freq=scale_grad_by_freq, |
|
sparse=sparse, |
|
weight=module.weight, |
|
*args, |
|
**kwargs, |
|
) |
|
|
|
return embedding |
|
|
|
def reset_parameters(self, weight_initializer) -> None: |
|
fan_in, fan_out = self.num_embeddings, self.embedding_dim |
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) |
|
self._fill_padding_idx_with_zero() |
|
|
|
def _fill_padding_idx_with_zero(self) -> None: |
|
if self.padding_idx is not None: |
|
with torch.no_grad(): |
|
self.weight[self.padding_idx].fill_(0) |
|
|
|
def forward(self, input_: Tensor) -> Tensor: |
|
output_parallel = F.embedding(input_, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs) |
|
if self.gather_output: |
|
output = gather_forward_split_backward(output_parallel, dim=-1, process_group=self.process_group) |
|
return output |
|
else: |
|
return output_parallel |
|
|
|
|
|
class PaddingEmbedding(PaddingParallelModule): |
|
def __init__( |
|
self, |
|
num_embeddings: int, |
|
embedding_dim: int, |
|
padding_idx: int = None, |
|
dtype: torch.dtype = None, |
|
device: torch.device = None, |
|
weight: Optional[nn.Parameter] = None, |
|
make_vocab_size_divisible_by: int = 64, |
|
*args, |
|
**kwargs, |
|
): |
|
self.num_embeddings = num_embeddings |
|
self.embedding_dim = embedding_dim |
|
self.embed_args = args |
|
self.embed_kwargs = kwargs |
|
self.padding_idx = padding_idx |
|
if num_embeddings % make_vocab_size_divisible_by != 0: |
|
self.num_embeddings = ( |
|
num_embeddings + make_vocab_size_divisible_by - (num_embeddings % make_vocab_size_divisible_by) |
|
) |
|
# create weight and bias |
|
if weight is None: |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
weight = nn.Parameter(torch.empty((num_embeddings, self.embedding_dim), **factory_kwargs)) |
|
else: |
|
weight.data = weight.data.to(device=device, dtype=dtype) |
|
|
|
super().__init__(self.num_embeddings, num_embeddings, weight) |
|
|
|
if weight is None: |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self) -> None: |
|
init.normal_(self.weight) |
|
self._fill_padding_idx_with_zero() |
|
|
|
def _fill_padding_idx_with_zero(self) -> None: |
|
if self.padding_idx is not None: |
|
with torch.no_grad(): |
|
self.weight[self.padding_idx].fill_(0) |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return F.embedding(input, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs) |
|
|
|
@staticmethod |
|
def from_native_module( |
|
module: nn.Embedding, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs |
|
) -> PaddingParallelModule: |
|
r""" |
|
Convert a native pytorch embedding module to a parallel module. |
|
""" |
|
LazyInitContext.materialize(module) |
|
# get the origin attributes |
|
num_embeddings = module.num_embeddings |
|
embedding_dim = module.embedding_dim |
|
padding_idx = module.padding_idx |
|
device = module.weight.device |
|
# create the parallel module |
|
padding_embedding = PaddingEmbedding( |
|
num_embeddings=num_embeddings, |
|
embedding_dim=embedding_dim, |
|
padding_idx=padding_idx, |
|
device=device, |
|
weight=module.weight, |
|
*args, |
|
**kwargs, |
|
) |
|
|
|
return padding_embedding |
|
|
|
|
|
class VocabParallelEmbedding1D(PaddingParallelModule): |
|
r"""Embedding parallelized in the vocabulary dimension. |
|
|
|
Args: |
|
num_embeddings (int): number of embeddings. |
|
embedding_dim (int): dimension of embedding. |
|
padding_idx (int, optional): If specified, the entries at padding_idx do not contribute to the gradient; |
|
therefore, the embedding vector at padding_idx is not updated during training, |
|
i.e. it remains as a fixed “pad”, defaults to None. |
|
dtype (:class:`torch.dtype`, optional): The dtype of parameters, defaults to None. |
|
weight_initializer (:class:`typing.Callable`, optional): |
|
he initializer of weight, defaults to normal initializer. |
|
|
|
The ``args`` and ``kwargs`` used in :class:``torch.nn.functional.embedding`` should contain: |
|
:: |
|
max_norm (float, optional): If given, each embedding vector with norm larger than max_norm is |
|
renormalized to have norm max_norm. Note: this will modify weight in-place. |
|
norm_type (float, optional): The p of the p-norm to compute for the max_norm option. Default 2. |
|
scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse |
|
of frequency of the words in the mini-batch. Default False. |
|
sparse (bool, optional): If True, gradient w.r.t. weight will be a sparse tensor. Default False. |
|
|
|
More details about ``args`` and ``kwargs`` could be found in |
|
`Embedding <https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html#torch.nn.functional.embedding>`_. |
|
|
|
More details about initializer please refer to |
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_embeddings: int, |
|
embedding_dim: int, |
|
padding_idx: int = None, |
|
dtype: torch.dtype = None, |
|
device: torch.device = None, |
|
process_group: ProcessGroup = None, |
|
weight: Optional[nn.Parameter] = None, |
|
weight_initializer: Callable = init.normal_(), |
|
make_vocab_size_divisible_by: int = 64, |
|
*args, |
|
**kwargs, |
|
): |
|
self.num_embeddings = num_embeddings |
|
self.embedding_dim = embedding_dim |
|
self.embed_args = args |
|
self.embed_kwargs = kwargs |
|
self.process_group = process_group |
|
|
|
tensor_parallel_size = dist.get_world_size(group=process_group) |
|
tensor_parallel_rank = dist.get_rank(group=process_group) |
|
|
|
# generate weight and bias |
|
if weight is None: |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
weight = nn.Parameter(torch.empty((num_embeddings, self.embedding_dim), **factory_kwargs)) |
|
else: |
|
weight.data = weight.data.to(device=device, dtype=dtype) |
|
|
|
# calculate new padding size |
|
multiple = make_vocab_size_divisible_by * tensor_parallel_size |
|
if num_embeddings % multiple != 0: |
|
self.num_embeddings = num_embeddings + multiple - (num_embeddings % multiple) |
|
|
|
# resize vocabulary size |
|
super().__init__(self.num_embeddings, num_embeddings, weight) |
|
|
|
# deal with tensor parallelism |
|
self.num_embeddings_per_partition = divide(self.num_embeddings, tensor_parallel_size) |
|
self.vocab_start_index = tensor_parallel_rank * self.num_embeddings_per_partition |
|
self.vocab_end_index = self.vocab_start_index + self.num_embeddings_per_partition |
|
|
|
# padding index |
|
self.padding_idx = self._select_padding_idx(padding_idx) |
|
|
|
# offset the seed with randomizer index and rank |
|
seed = torch.random.initial_seed() |
|
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group) |
|
|
|
if not is_distributed_tensor(self.weight): |
|
sharded_weight = shard_rowwise(self.weight.data, process_group) |
|
sharded_tensor_to_existing_param(sharded_weight, self.weight) |
|
|
|
if weight is None: |
|
self.reset_parameters(weight_initializer) |
|
|
|
@staticmethod |
|
def from_native_module( |
|
module: nn.Embedding, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs |
|
) -> PaddingParallelModule: |
|
r""" |
|
Convert a native pytorch embedding module to a parallel module. |
|
""" |
|
LazyInitContext.materialize(module) |
|
# get the origin attributes |
|
num_embeddings = module.num_embeddings |
|
embedding_dim = module.embedding_dim |
|
padding_idx = module.padding_idx |
|
device = module.weight.device |
|
|
|
# ensure only one process group is used |
|
if isinstance(process_group, (list, tuple)): |
|
assert len(process_group) == 1, f"Expected only one process group, got {len(process_group)}." |
|
process_group = process_group[0] |
|
|
|
# create the parallel module |
|
vocab_embedding_1d = VocabParallelEmbedding1D( |
|
num_embeddings=num_embeddings, |
|
embedding_dim=embedding_dim, |
|
padding_idx=padding_idx, |
|
device=device, |
|
process_group=process_group, |
|
weight=module.weight, |
|
*args, |
|
**kwargs, |
|
) |
|
|
|
return vocab_embedding_1d |
|
|
|
def reset_parameters(self, weight_initializer) -> None: |
|
with self.randomizer.fork_rng(enable_cpu=True): |
|
fan_in, fan_out = self.num_embeddings, self.embedding_dim |
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) |
|
self._fill_padding_idx_with_zero() |
|
|
|
def _fill_padding_idx_with_zero(self) -> None: |
|
if ( |
|
self.padding_idx is not None |
|
and self.padding_idx >= self.vocab_start_index |
|
and self.padding_idx < self.vocab_end_index |
|
): |
|
with torch.no_grad(): |
|
self.weight[self.padding_idx - self.vocab_start_index].fill_(0) |
|
|
|
def _select_padding_idx(self, padding_idx: int): |
|
# select padding index according to the rank |
|
if padding_idx is None: |
|
return None |
|
elif padding_idx < self.vocab_end_index and padding_idx >= self.vocab_start_index: |
|
return padding_idx - self.vocab_start_index |
|
else: |
|
return None |
|
|
|
def forward(self, input_: Tensor) -> Tensor: |
|
# Build the mask. |
|
input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index) |
|
# Mask the input. |
|
masked_input = input_.clone() - self.vocab_start_index |
|
masked_input[input_mask] = 0 |
|
output_parallel = F.embedding( |
|
masked_input, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs |
|
) |
|
# Mask the output embedding. |
|
embedding_output = output_parallel.clone() |
|
embedding_output[input_mask, :] = 0.0 |
|
# Reduce across all the model parallel GPUs. |
|
output = reduce_forward(embedding_output, self.process_group) |
|
return output
|
|
|