mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
473 lines
20 KiB
473 lines
20 KiB
from functools import partial |
|
from typing import Any, Callable, Dict, Iterable, List, Optional, Union |
|
|
|
import torch |
|
import torch.cuda |
|
from torch.nn import Module |
|
from torch.utils._pytree import tree_map |
|
|
|
from colossalai.accelerator import get_accelerator |
|
from colossalai.interface import ModelWrapper, OptimizerWrapper |
|
from colossalai.pipeline.p2p import PipelineP2PCommunication, create_send_metadata |
|
from colossalai.pipeline.stage_manager import PipelineStageManager |
|
from colossalai.quantization.fp8 import cast_from_fp8_pipeline, cast_to_fp8_pipeline |
|
from colossalai.utils import get_current_device |
|
|
|
from ._utils import ( |
|
detach, |
|
get_batch_size, |
|
get_micro_batch, |
|
merge_batch, |
|
model_forward, |
|
retain_grad, |
|
to_device, |
|
tree_map_hf, |
|
) |
|
from .base import PipelineSchedule |
|
|
|
|
|
class OneForwardOneBackwardSchedule(PipelineSchedule): |
|
def __init__( |
|
self, |
|
stage_manager: PipelineStageManager, |
|
num_microbatches: Optional[int] = None, |
|
microbatch_size: Optional[int] = None, |
|
enable_metadata_cache: bool = True, |
|
fp8_communication: bool = False, |
|
) -> None: |
|
"""1F1B pipeline schedule. |
|
|
|
Args: |
|
stage_manager (PipelineStageManager): Pipeline stage manager |
|
num_microbatches (Optional[int], optional): The number of microbatches. If not provided, it will be derived from microbatch size. Defaults to None. |
|
microbatch_size (Optional[int], optional): Microbatch size. If num_microbatches is provided, this will be ignored. Defaults to None. |
|
""" |
|
super().__init__(stage_manager) |
|
assert ( |
|
num_microbatches is not None or microbatch_size is not None |
|
), "Either num_microbatches or microbatch_size should be provided" |
|
|
|
self.comm = PipelineP2PCommunication(stage_manager, overlap_p2p=False) |
|
|
|
self.num_microbatches = num_microbatches |
|
self.microbatch_size = microbatch_size |
|
self.batch: Optional[Any] = None |
|
self.batch_size: Optional[int] = None |
|
self.last_batch_size: Optional[int] = None |
|
self.microbatch_offset: Optional[int] = None |
|
|
|
# P2PMeta cache |
|
self.enable_metadata_cache = enable_metadata_cache |
|
self.send_tensor_metadata = True |
|
self.send_grad_metadata = True |
|
self.tensor_metadata_recv = None |
|
self.grad_metadata_recv = None |
|
|
|
self.fp8_communication = fp8_communication |
|
|
|
def load_batch(self, data_iter: Iterable, device: Optional[torch.device] = None) -> None: |
|
"""Load a batch from data iterator. |
|
|
|
Args: |
|
data_iter (Iterable): Data iterator. |
|
device (Optional[torch.device], optional): Target device. Defaults to None. |
|
""" |
|
batch = next(data_iter) |
|
if device is not None: |
|
batch = tree_map(partial(to_device, device=device), batch) |
|
|
|
self.microbatch_offset = 0 |
|
self.batch = batch |
|
self.batch_size = get_batch_size(batch) |
|
|
|
if self.microbatch_size is None: |
|
assert self.batch_size % self.num_microbatches == 0, "Batch size should divided by # microbatches" |
|
self.microbatch_size = self.batch_size // self.num_microbatches |
|
if self.num_microbatches is None: |
|
assert self.batch_size % self.microbatch_size == 0, "Batch size should divided by the microbatch size" |
|
self.num_microbatches = self.batch_size // self.microbatch_size |
|
|
|
if not self.forward_only: |
|
assert self.last_batch_size is None or self.last_batch_size == self.batch_size |
|
assert self.batch_size == self.microbatch_size * self.num_microbatches |
|
|
|
assert ( |
|
self.num_microbatches >= self.stage_manager.num_stages |
|
), "Number of microbatch should be larger than number of stages" |
|
|
|
if self.forward_only: |
|
self.num_microbatches = (self.batch_size - 1) // self.microbatch_size + 1 |
|
# NOTE: disable metadata cache when batch size changes (not valid anymore) |
|
if self.batch_size != self.last_batch_size: |
|
self.enable_metadata_cache = False |
|
self.send_tensor_metadata = True |
|
self.send_grad_metadata = True |
|
self.tensor_metadata_recv = None |
|
self.grad_metadata_recv = None |
|
|
|
self.last_batch_size = self.batch_size |
|
|
|
def load_micro_batch(self) -> Any: |
|
"""Load a micro batch from the current batch. |
|
|
|
Returns: |
|
Any: Micro batch. |
|
""" |
|
assert self.microbatch_offset <= self.batch_size, "Microbatches exhausted" |
|
micro_batch = get_micro_batch(self.batch, self.microbatch_offset, self.microbatch_size) |
|
self.microbatch_offset += self.microbatch_size |
|
return tree_map(partial(to_device, device=get_accelerator().get_current_device()), micro_batch) |
|
|
|
def recv_forward(self, prev_rank: int = None) -> Any: |
|
"""Copy the forward output from the previous stage in pipeline as the input tensor of this stage. |
|
For 1F1B. |
|
|
|
Args: |
|
prev_rank (int, optional): The rank of the source of the tensor. |
|
|
|
Returns: |
|
Any: The input tensor or input tensor list. |
|
""" |
|
if not self.stage_manager.is_first_stage(): |
|
input_tensor, _ = self.comm.recv_forward(prev_rank, metadata_recv=self.tensor_metadata_recv) |
|
if self.enable_metadata_cache and self.tensor_metadata_recv is None: |
|
self.tensor_metadata_recv = create_send_metadata(input_tensor) |
|
|
|
if self.fp8_communication: |
|
cast_from_fp8_pipeline(input_tensor) |
|
return input_tensor |
|
|
|
def recv_backward(self, next_rank: int = None) -> Any: |
|
"""Copy the gradient tensor from the next stage in pipeline as the input gradient of this stage. |
|
For 1F1B. |
|
|
|
Args: |
|
next_rank (int, optional): The rank of the source of the tensor. |
|
|
|
Returns: |
|
Any: The input gradient tensor or gradient tensor list. |
|
""" |
|
if not self.stage_manager.is_last_stage(): |
|
output_tensor_grad, _ = self.comm.recv_backward(next_rank, metadata_recv=self.grad_metadata_recv) |
|
if self.fp8_communication: |
|
cast_from_fp8_pipeline(output_tensor_grad) |
|
if self.enable_metadata_cache and self.grad_metadata_recv is None: |
|
self.grad_metadata_recv = create_send_metadata(output_tensor_grad) |
|
|
|
return output_tensor_grad |
|
|
|
def send_forward(self, output_tensor: Any, next_rank: int = None) -> None: |
|
"""Sends the input tensor to the next stage in pipeline. |
|
For 1F1B. |
|
|
|
Args: |
|
output_object (Any): Object to be sent. |
|
next_rank (int, optional): The rank of the recipient of the tensor. |
|
""" |
|
if not self.stage_manager.is_last_stage(): |
|
if self.fp8_communication: |
|
cast_to_fp8_pipeline(output_tensor) |
|
self.comm.send_forward(output_tensor, next_rank, send_metadata=self.send_tensor_metadata) |
|
self.send_tensor_metadata = not self.enable_metadata_cache |
|
|
|
if self.fp8_communication: |
|
cast_from_fp8_pipeline(output_tensor, del_metadata=False) |
|
|
|
def send_backward(self, input_tensor_grad: Any, prev_rank: int = None) -> None: |
|
"""Sends the gradient tensor to the previous stage in pipeline. |
|
For 1F1B. |
|
|
|
Args: |
|
input_object (Any): Object to be sent. |
|
prev_rank (int, optional): The rank of the recipient of the tensor |
|
""" |
|
if not self.stage_manager.is_first_stage(): |
|
if self.fp8_communication: |
|
cast_to_fp8_pipeline(input_tensor_grad) |
|
self.comm.send_backward(input_tensor_grad, prev_rank, send_metadata=self.send_grad_metadata) |
|
self.send_grad_metadata = not self.enable_metadata_cache |
|
if self.fp8_communication: |
|
cast_from_fp8_pipeline(input_tensor_grad, del_metadata=False) |
|
|
|
def send_forward_recv_backward(self, output_tensor: Any, send_first: Optional[bool] = None) -> Any: |
|
"""Sends the input tensor to the next stage and copy the gradient tensor from the next stage in pipeline. |
|
For 1F1B. |
|
|
|
Args: |
|
output_object (Any): Object to be sent. |
|
next_rank (int, optional): The rank of the recipient of the tensor. |
|
""" |
|
if not self.stage_manager.is_last_stage(): |
|
if not self.send_tensor_metadata and self.grad_metadata_recv is not None: |
|
send_first = None |
|
if self.fp8_communication: |
|
cast_to_fp8_pipeline(output_tensor) |
|
output_tensor_grad, _ = self.comm.send_forward_recv_backward( |
|
output_tensor, |
|
send_metadata=self.send_tensor_metadata, |
|
metadata_recv=self.grad_metadata_recv, |
|
send_first=send_first, |
|
) |
|
self.send_tensor_metadata = not self.enable_metadata_cache |
|
if self.enable_metadata_cache and self.grad_metadata_recv is None: |
|
self.grad_metadata_recv = create_send_metadata(output_tensor_grad) |
|
if self.fp8_communication: |
|
cast_from_fp8_pipeline(output_tensor, del_metadata=False) |
|
cast_from_fp8_pipeline(output_tensor_grad) |
|
|
|
return output_tensor_grad |
|
|
|
def send_backward_recv_forward(self, input_tensor_grad: Any, send_first: Optional[bool] = None) -> Any: |
|
"""Sends the gradient tensor to the previous stage and copy the input tensor from the previous stage in pipeline. |
|
For 1F1B. |
|
|
|
Args: |
|
output_object (Any): Object to be sent. |
|
prev_rank (int, optional): The rank of the recipient of the tensor. |
|
""" |
|
if not self.stage_manager.is_first_stage(): |
|
if not self.send_grad_metadata and self.tensor_metadata_recv is not None: |
|
send_first = None # must not fallback |
|
if self.fp8_communication: |
|
cast_to_fp8_pipeline(input_tensor_grad) |
|
input_tensor, _ = self.comm.send_backward_recv_forward( |
|
input_tensor_grad, |
|
send_metadata=self.send_grad_metadata, |
|
metadata_recv=self.tensor_metadata_recv, |
|
send_first=send_first, |
|
) |
|
self.send_grad_metadata = not self.enable_metadata_cache |
|
if self.enable_metadata_cache and self.tensor_metadata_recv is None: |
|
self.tensor_metadata_recv = create_send_metadata(input_tensor) |
|
if self.fp8_communication: |
|
cast_from_fp8_pipeline(input_tensor) |
|
cast_from_fp8_pipeline(input_tensor_grad, del_metadata=False) |
|
|
|
return input_tensor |
|
|
|
def forward_step( |
|
self, |
|
model: Module, |
|
input_obj: Optional[dict], |
|
criterion: Callable, |
|
accum_loss: Optional[torch.Tensor] = None, |
|
outputs: Optional[List[Any]] = None, |
|
) -> Union[torch.Tensor, dict]: |
|
"""Forward one step of the pipeline |
|
|
|
Args: |
|
model (Module): Model to be run |
|
input_obj (Optional[dict]): The output from the previous stage. If it is the first stage, the `input_obj` is None. |
|
criterion (Callable): Criterion to calculate loss. |
|
accum_loss (Optional[torch.Tensor], optional): Accumulated loss. Defaults to None. |
|
outputs (Optional[List[Any]], optional): List to store the output of the last stage (final output). Defaults to None. |
|
|
|
Returns: |
|
Union[torch.Tensor, dict]: The intermediate output (dict) of the current stage. If it is the last stage, the output is the loss (Tensor). |
|
""" |
|
micro_batch = self.load_micro_batch() |
|
# for the first stage, input_obj is None |
|
# for the non-first stage, input_obj is the output of the previous stage and it's must be a dict |
|
output_obj = model_forward(model, micro_batch, input_obj) |
|
if self.stage_manager.is_last_stage(): |
|
loss = criterion(output_obj, micro_batch) / self.num_microbatches |
|
if accum_loss is not None: |
|
accum_loss.add_(loss.detach()) |
|
if outputs is not None: |
|
outputs.append(tree_map_hf(detach, output_obj)) |
|
return loss |
|
else: |
|
return output_obj |
|
|
|
def backward_step( |
|
self, |
|
optimizer: OptimizerWrapper, |
|
input_obj: Optional[dict], |
|
output_obj: Union[dict, torch.Tensor], |
|
output_obj_grad: Optional[dict], |
|
) -> Optional[dict]: |
|
"""Backward one step of the pipeline |
|
|
|
Args: |
|
optimizer (OptimizerWrapper): Optimizer to update the model |
|
input_obj (Optional[dict]): Output of the previous stage. If it is the first stage, the `input_obj` is None. |
|
output_obj (Union[dict, torch.Tensor]): Output of the current stage. If it is the last stage, the output is the loss (Tensor). |
|
output_obj_grad (dict): Gradient of the `output_obj`. If it is the last stage, the `output_obj_grad` is None. |
|
|
|
Returns: |
|
Optional[dict]: Gradient of the `input_obj`. If it is the first stage, the `input_obj_grad` is None. |
|
""" |
|
|
|
# Retain the grad on the input_obj. |
|
tree_map(retain_grad, input_obj) |
|
# Backward pass. |
|
if output_obj_grad is None: |
|
optimizer.backward(output_obj) |
|
else: |
|
if "backward_tensor_keys" not in output_obj: |
|
for k, grad in output_obj_grad.items(): |
|
optimizer.backward_by_grad(output_obj[k], grad) |
|
else: |
|
for k, grad in output_obj_grad.items(): |
|
output_obj[k].grad = grad |
|
for k in output_obj["backward_tensor_keys"]: |
|
tensor_to_backward = output_obj[k] |
|
optimizer.backward_by_grad(tensor_to_backward, tensor_to_backward.grad) |
|
|
|
# Collect the grad of the input_obj. |
|
input_obj_grad = None |
|
if input_obj is not None: |
|
input_obj_grad = {} |
|
for k, v in input_obj.items(): |
|
if isinstance(v, torch.Tensor) and v.grad is not None: |
|
input_obj_grad[k] = v.grad |
|
return input_obj_grad |
|
|
|
def run_forward_only( |
|
self, |
|
model: Module, |
|
data_iter: Iterable, |
|
criterion: Callable[..., Any], |
|
return_loss: bool = False, |
|
return_outputs: bool = False, |
|
) -> Dict: |
|
""" |
|
Runs forward only schedule, with communication between pipeline stages. |
|
""" |
|
assert self.forward_only |
|
|
|
self.load_batch(data_iter) |
|
|
|
accum_loss = None |
|
if return_loss and self.stage_manager.is_last_stage(): |
|
accum_loss = torch.scalar_tensor(0, device=get_accelerator().get_current_device()) |
|
outputs = [] if return_outputs and self.stage_manager.is_last_stage() else None |
|
|
|
for _ in range(self.num_microbatches): |
|
input_obj = self.recv_forward() |
|
output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs) |
|
self.send_forward(output_obj) |
|
|
|
if outputs is not None: |
|
if isinstance(model, ModelWrapper): |
|
model = model.unwrap() |
|
batch_size_dim = getattr(model, "batch_size_dim", 0) |
|
outputs = merge_batch(outputs, batch_size_dim) |
|
return {"loss": accum_loss, "outputs": outputs} |
|
|
|
def run_forward_backward( |
|
self, |
|
model: Module, |
|
data_iter: Iterable, |
|
criterion: Callable[..., Any], |
|
optimizer: Optional[OptimizerWrapper] = None, |
|
return_loss: bool = False, |
|
return_outputs: bool = False, |
|
) -> Dict: |
|
""" |
|
Runs non-interleaved 1F1B schedule, with communication between pipeline stages. |
|
""" |
|
assert not self.forward_only |
|
|
|
self.load_batch(data_iter) |
|
|
|
# num_warmup_microbatches is the step when not all the processes are working |
|
num_warmup_microbatches = self.stage_manager.num_stages - self.stage_manager.stage - 1 |
|
num_warmup_microbatches = min(num_warmup_microbatches, self.num_microbatches) |
|
num_microbatches_remaining = self.num_microbatches - num_warmup_microbatches |
|
|
|
# Input, output tensors only need to be saved when doing backward passes |
|
input_objs, output_objs = [], [] |
|
|
|
accum_loss = None |
|
if return_loss and self.stage_manager.is_last_stage(): |
|
accum_loss = torch.scalar_tensor(0, device=get_current_device()) |
|
outputs = [] if return_outputs and self.stage_manager.is_last_stage() else None |
|
|
|
# Run warmup forward passes. |
|
for i in range(num_warmup_microbatches): |
|
input_obj = self.recv_forward() |
|
output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs) |
|
self.send_forward(output_obj) |
|
input_objs.append(input_obj) |
|
output_objs.append(output_obj) |
|
|
|
# Before running 1F1B, need to receive first forward tensor. |
|
# If all microbatches are run in warmup / cooldown phase, then no need to |
|
# receive this tensor here. |
|
if num_microbatches_remaining > 0: |
|
input_obj = self.recv_forward() |
|
|
|
# Run 1F1B in steady state. |
|
for i in range(num_microbatches_remaining): |
|
last_iteration = i == (num_microbatches_remaining - 1) |
|
|
|
output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs) |
|
output_obj_grad = self.send_forward_recv_backward(output_obj, send_first=self.stage_manager.stage % 2 == 0) |
|
# Add input_obj and output_obj to end of list. |
|
input_objs.append(input_obj) |
|
output_objs.append(output_obj) |
|
|
|
# Pop output_obj and output_obj from the start of the list for |
|
# the backward pass. |
|
input_obj = input_objs.pop(0) |
|
output_obj = output_objs.pop(0) |
|
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad) |
|
|
|
if last_iteration: |
|
self.send_backward(input_obj_grad) |
|
else: |
|
input_obj = self.send_backward_recv_forward( |
|
input_obj_grad, send_first=self.stage_manager.stage % 2 == 0 |
|
) |
|
|
|
# Run cooldown backward passes. |
|
for i in range(num_warmup_microbatches): |
|
input_obj = input_objs.pop(0) |
|
output_obj = output_objs.pop(0) |
|
|
|
output_obj_grad = self.recv_backward() |
|
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad) |
|
self.send_backward(input_obj_grad) |
|
|
|
assert all(len(v) == 0 for v in input_objs) and all(len(v) == 0 for v in output_objs) |
|
|
|
if outputs is not None: |
|
if isinstance(model, ModelWrapper): |
|
model = model.unwrap() |
|
batch_size_dim = getattr(model, "batch_size_dim", 0) |
|
outputs = merge_batch(outputs, batch_size_dim) |
|
return {"loss": accum_loss, "outputs": outputs} |
|
|
|
def forward_backward_step( |
|
self, |
|
model: Module, |
|
data_iter: Iterable, |
|
criterion: Callable[..., Any], |
|
optimizer: Optional[OptimizerWrapper] = None, |
|
return_loss: bool = False, |
|
return_outputs: bool = False, |
|
) -> dict: |
|
""" |
|
Args: |
|
model (Module): Model to be trained. |
|
data_iter (Iterable): Data iterator. |
|
criterion (Callable[[Any, Any], Tensor]): Criterion to be used. It should take two arguments: model outputs and inputs, and returns loss tensor. |
|
optimizer (OptimizerWrapper, optional): Optimizer to be used. Can be None when only forward is executed. Defaults to None. |
|
return_loss (bool, optional): Whether to return loss. Defaults to False. Whether to return loss. |
|
return_outputs (bool, optional): Whether to return model outputs. Defaults to False. Whether to return model outputs. |
|
|
|
Returns: |
|
dict: Dictionary containing loss and outputs. |
|
""" |
|
|
|
self.forward_only = not torch.is_grad_enabled() |
|
if optimizer is None: |
|
assert self.forward_only, "Optimizer should be passed when doing backward." |
|
|
|
if self.forward_only: |
|
result = self.run_forward_only(model, data_iter, criterion, return_loss, return_outputs) |
|
else: |
|
result = self.run_forward_backward(model, data_iter, criterion, optimizer, return_loss, return_outputs) |
|
|
|
return result
|
|
|