Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

175 lines
5.1 KiB

from collections import OrderedDict
from typing import Any, List, Optional, Tuple
import torch
import torch.cuda
from torch.nn import Module
from torch.utils._pytree import SUPPORTED_NODES, TreeSpec, _register_pytree_node, tree_flatten, tree_map, tree_unflatten
# this register are for torch under version 1.13.1, maybe removed in the future
def _odict_flatten(d: "OrderedDict[Any, Any]") -> Tuple[List[Any], Any]:
return list(d.values()), list(d.keys())
def _odict_unflatten(values: List[Any], context: Any) -> "OrderedDict[Any, Any]":
return OrderedDict((key, value) for key, value in zip(context, values))
_register_pytree_node(OrderedDict, _odict_flatten, _odict_unflatten)
def tree_map_hf(fn: Any, pytree: Any):
flat_args, spec = tree_flatten_hf(pytree)
return tree_unflatten([fn(i) for i in flat_args], spec)
# use this flatten function to handle the ModelingOutput Class instance.
def tree_flatten_hf(pytree: Any) -> Tuple[List[Any], TreeSpec]:
"""Flattens a pytree into a list of values an a TreeSpec that can be used
to reconstruct the pytree.
"""
if isinstance(pytree, OrderedDict):
node_type = OrderedDict
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
child_pytrees, context = flatten_fn(pytree)
# Recursively flatten the children
result: List[Any] = []
children_specs: List["TreeSpec"] = []
for child in child_pytrees:
flat, child_spec = tree_flatten_hf(child)
result += flat
children_specs.append(child_spec)
return result, TreeSpec(node_type, context, children_specs)
else:
result, tree_spec = tree_flatten(pytree)
return result, tree_spec
def to_device(x: Any, device: Optional[torch.device] = None) -> Any:
"""Move object to device if it is a tensor.
Args:
x (Any): Object to be moved.
device (Optional[torch.device], optional): Target device. Defaults to None.
Returns:
Any: Moved object.
"""
if isinstance(x, torch.Tensor):
return x.to(device)
return x
def get_batch_size(batch: Any) -> int:
"""Get the batch size (size of dimension-0) of the first tensor in the batch.
Args:
batch (Any): Batch to be inspected.
Raises:
RuntimeError: If no tensor is found in the batch.
Returns:
int: Batch size.
"""
data_list, _ = tree_flatten(batch)
for data in data_list:
if isinstance(data, torch.Tensor):
return data.size(0)
raise RuntimeError("No tensor found in the batch")
def get_micro_batch(batch: Any, start: int, micro_batch_size: int) -> Any:
"""Get a micro batch of the original batch.
Args:
batch (Any): Batch to be sliced.
start (int): Start index of the micro batch.
micro_batch_size (int): Size of the micro batch.
Returns:
Any: Target micro batch.
"""
def _get_tensor_slice(x: Any):
if isinstance(x, torch.Tensor):
return x[start : start + micro_batch_size]
return x
return tree_map(_get_tensor_slice, batch)
def model_forward(model: Module, data: Any, internal_inputs: Optional[dict]) -> Any:
"""Call model forward function with data and internal inputs.
Args:
model (Module): Model to be called.
data (Any): Data loaded from data iterator.
internal_inputs (Optional[dict]): Data from previous stage. It must be a dict or None if it's the first stage.
Returns:
Any: Outputs of the model.
"""
if internal_inputs is None:
internal_inputs = {}
if isinstance(data, (list, tuple)):
return model(*data, **internal_inputs)
elif isinstance(data, dict):
return model(**data, **internal_inputs)
return model(data, **internal_inputs)
def retain_grad(x: Any) -> None:
"""Call retain_grad() on a tensor.
Args:
x (Any): Object to be called.
"""
if isinstance(x, torch.Tensor) and x.requires_grad:
x.retain_grad()
def detach(x: Any) -> Any:
"""Call detach() on a tensor.
Args:
x (Any): Object to be called.
Returns:
Any: The detached object.
"""
if isinstance(x, torch.Tensor):
return x.detach()
return x
def merge_batch(data: List[Any], batch_size_dim=0) -> Any:
"""Merge micro batches into a batch.
Args:
data (List[Any]): A list of micro batches.
Returns:
Any: Merge batch.
"""
if len(data) == 0:
return
flattened_data = []
tree_spec = None
for d in data:
# elems should be an instance of OrderedDict
elems, tree_spec = tree_flatten_hf(d)
flattened_data.append(elems)
merged_data = []
for elem_batch in zip(*flattened_data):
if isinstance(elem_batch[0], torch.Tensor):
if len(elem_batch[0].shape) == 0: # set loss to None in pipeline outputs
merged_data.append(None)
else:
merged_data.append(torch.cat(elem_batch, dim=batch_size_dim))
else:
merged_data.append(list(elem_batch))
return tree_unflatten(merged_data, tree_spec)