mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
7.5 KiB
179 lines
7.5 KiB
import torch |
|
from packaging.version import Version |
|
|
|
if Version(torch.__version__) >= Version("2.0.0"): |
|
from torch.optim.lr_scheduler import LRScheduler as _LRScheduler |
|
else: |
|
from torch.optim.lr_scheduler import _LRScheduler |
|
|
|
from colossalai.logging import get_dist_logger |
|
|
|
|
|
class _enable_get_lr_call: |
|
def __init__(self, o): |
|
self.o = o |
|
|
|
def __enter__(self): |
|
self.o._get_lr_called_within_step = True |
|
return self |
|
|
|
def __exit__(self, type, value, traceback): |
|
self.o._get_lr_called_within_step = False |
|
|
|
|
|
class TwoStageScheduler(_LRScheduler): |
|
def __init__(self, optimizer, after_scheduler: _LRScheduler, last_epoch=-1): |
|
self.after_scheduler = after_scheduler |
|
self.finished = False |
|
super().__init__(optimizer, last_epoch) |
|
|
|
def state_dict(self): |
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in "optimizer"} |
|
if isinstance(state_dict["after_scheduler"], _LRScheduler): |
|
state_dict["after_scheduler_type"] = type(state_dict["after_scheduler"]).__name__ |
|
state_dict["after_scheduler_dict"] = state_dict["after_scheduler"].state_dict() |
|
del state_dict["after_scheduler"] |
|
else: |
|
raise NotImplementedError() |
|
return state_dict |
|
|
|
def load_state_dict(self, state_dict): |
|
if "after_scheduler_dict" not in state_dict: |
|
logger = get_dist_logger() |
|
logger.warning( |
|
"after_scheduler_dict is not found, skip loading after_scheduler. This may cause unexpected behavior." |
|
) |
|
else: |
|
self.after_scheduler.load_state_dict(state_dict["after_scheduler_dict"]) |
|
state_dict = { |
|
key: value |
|
for key, value in state_dict.items() |
|
if key not in ("after_scheduler_type", "after_scheduler_dict") |
|
} |
|
super().load_state_dict(state_dict) |
|
|
|
|
|
class DelayerScheduler(TwoStageScheduler): |
|
"""Starts with a flat lr schedule until it reaches N epochs then applies |
|
the specific scheduler (For example: ReduceLROnPlateau) |
|
|
|
Args: |
|
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. |
|
delay_epochs (int): Number of epochs to keep the initial lr until starting applying the scheduler. |
|
after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler. |
|
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, |
|
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. |
|
""" |
|
|
|
def __init__(self, optimizer, delay_epochs, after_scheduler, last_epoch=-1): |
|
if delay_epochs < 0: |
|
raise ValueError(f"delay_epochs must >= 0, got {delay_epochs}") |
|
self.delay_epochs = delay_epochs |
|
super().__init__(optimizer, after_scheduler, last_epoch) |
|
|
|
def get_lr(self): |
|
if self.last_epoch >= self.delay_epochs: |
|
if not self.finished: |
|
self.after_scheduler.base_lrs = self.base_lrs |
|
self.finished = True |
|
with _enable_get_lr_call(self.after_scheduler): |
|
return self.after_scheduler.get_lr() |
|
|
|
return self.base_lrs |
|
|
|
def step(self, epoch=None): |
|
if self.finished: |
|
if epoch is None: |
|
self.after_scheduler.step(None) |
|
self._last_lr = self.after_scheduler.get_last_lr() |
|
else: |
|
self.after_scheduler.step(epoch - self.delay_epochs) |
|
self._last_lr = self.after_scheduler.get_last_lr() |
|
else: |
|
return super(DelayerScheduler, self).step(epoch) |
|
|
|
|
|
class WarmupScheduler(TwoStageScheduler): |
|
"""Starts with a linear warmup lr schedule until it reaches N epochs then applies |
|
the specific scheduler (For example: ReduceLROnPlateau). |
|
|
|
Args: |
|
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. |
|
warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler. |
|
after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler. |
|
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, |
|
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. |
|
""" |
|
|
|
def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1): |
|
self.warmup_epochs = int(warmup_epochs) |
|
super().__init__(optimizer, after_scheduler, last_epoch) |
|
|
|
def get_lr(self): |
|
if self.last_epoch >= self.warmup_epochs: |
|
if not self.finished: |
|
self.after_scheduler.base_lrs = self.base_lrs |
|
self.finished = True |
|
return self.after_scheduler.get_lr() |
|
|
|
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs] |
|
|
|
def step(self, epoch=None): |
|
if self.finished: |
|
if epoch is None: |
|
self.after_scheduler.step(None) |
|
self._last_lr = self.after_scheduler.get_last_lr() |
|
else: |
|
self.after_scheduler.step(epoch - self.warmup_epochs) |
|
self._last_lr = self.after_scheduler.get_last_lr() |
|
else: |
|
return super().step(epoch) |
|
|
|
|
|
class WarmupDelayerScheduler(TwoStageScheduler): |
|
"""Starts with a linear warmup lr schedule until it reaches N epochs and a flat lr schedule |
|
until it reaches M epochs then applies the specific scheduler (For example: ReduceLROnPlateau). |
|
|
|
Args: |
|
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. |
|
warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler. |
|
delay_epochs (int): Number of epochs to keep the initial lr until starting applying the scheduler. |
|
after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler. |
|
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, |
|
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. |
|
""" |
|
|
|
def __init__(self, optimizer, warmup_epochs, delay_epochs, after_scheduler, last_epoch=-1): |
|
if delay_epochs < 0: |
|
raise ValueError(f"delay_epochs must >= 0, got {delay_epochs}") |
|
if warmup_epochs < 0: |
|
raise ValueError(f"warmup_epochs must >= 0, got {warmup_epochs}") |
|
self.warmup_epochs = warmup_epochs |
|
self.delay_epochs = delay_epochs |
|
super().__init__(optimizer, after_scheduler, last_epoch) |
|
|
|
def get_lr(self): |
|
if self.last_epoch >= self.warmup_epochs + self.delay_epochs: |
|
if not self.finished: |
|
self.after_scheduler.base_lrs = self.base_lrs |
|
# reset lr to base_lr |
|
for group, base_lr in zip(self.optimizer.param_groups, self.base_lrs): |
|
group["lr"] = base_lr |
|
self.finished = True |
|
with _enable_get_lr_call(self.after_scheduler): |
|
return self.after_scheduler.get_lr() |
|
elif self.last_epoch >= self.warmup_epochs: |
|
return self.base_lrs |
|
|
|
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs] |
|
|
|
def step(self, epoch=None): |
|
if self.finished: |
|
if epoch is None: |
|
self.after_scheduler.step(None) |
|
self._last_lr = self.after_scheduler.get_last_lr() |
|
else: |
|
self.after_scheduler.step(epoch - self.warmup_epochs) |
|
self._last_lr = self.after_scheduler.get_last_lr() |
|
else: |
|
return super().step(epoch)
|
|
|