mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
237 lines
8.2 KiB
237 lines
8.2 KiB
""" |
|
Doc: |
|
Feature: |
|
- FastAPI based http server for Colossal-Inference |
|
- Completion Service Supported |
|
Usage: (for local user) |
|
- First, Lauch an API locally. `python3 -m colossalai.inference.server.api_server --model path of your llama2 model` |
|
- Second, you can turn to the page `http://127.0.0.1:8000/docs` to check the api |
|
- For completion service, you can invoke it by using `curl -X POST http://127.0.0.1:8000/completion \ |
|
-H 'Content-Type: application/json' \ |
|
-d '{"prompt":"hello, who are you? ","stream":"False"}'` |
|
Version: V1.0 |
|
""" |
|
|
|
import argparse |
|
import json |
|
|
|
import uvicorn |
|
from fastapi import FastAPI, Request |
|
from fastapi.responses import JSONResponse, Response, StreamingResponse |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
import colossalai |
|
from colossalai.inference.config import InferenceConfig |
|
from colossalai.inference.server.chat_service import ChatServing |
|
from colossalai.inference.server.completion_service import CompletionServing |
|
from colossalai.inference.server.utils import id_generator |
|
from colossalai.inference.utils import find_available_ports |
|
|
|
from colossalai.inference.core.async_engine import AsyncInferenceEngine, InferenceEngine # noqa |
|
|
|
TIMEOUT_KEEP_ALIVE = 5 # seconds. |
|
prompt_template_choices = ["llama", "vicuna"] |
|
async_engine = None |
|
chat_serving = None |
|
completion_serving = None |
|
|
|
app = FastAPI() |
|
|
|
|
|
@app.get("/ping") |
|
def health_check() -> JSONResponse: |
|
"""Health Check for server.""" |
|
return JSONResponse({"status": "Healthy"}) |
|
|
|
|
|
@app.get("/engine_check") |
|
def engine_check() -> bool: |
|
"""Check if the background loop is running.""" |
|
loop_status = async_engine.background_loop_status |
|
if loop_status == False: |
|
return JSONResponse({"status": "Error"}) |
|
return JSONResponse({"status": "Running"}) |
|
|
|
|
|
@app.post("/generate") |
|
async def generate(request: Request) -> Response: |
|
"""Generate completion for the request. |
|
NOTE: THIS API IS USED ONLY FOR TESTING, DO NOT USE THIS IF YOU ARE IN ACTUAL APPLICATION. |
|
|
|
A request should be a JSON object with the following fields: |
|
- prompts: the prompts to use for the generation. |
|
- stream: whether to stream the results or not. |
|
- other fields: |
|
""" |
|
request_dict = await request.json() |
|
prompt = request_dict.pop("prompt") |
|
stream = request_dict.pop("stream", "false") |
|
if isinstance(stream, str): |
|
stream = stream.lower() |
|
request_id = id_generator() |
|
generation_config = get_generation_config(request_dict) |
|
results = engine.generate(request_id, prompt, generation_config=generation_config) |
|
|
|
# Streaming case |
|
def stream_results(): |
|
for request_output in results: |
|
ret = {"text": request_output[len(prompt) :]} |
|
yield (json.dumps(ret) + "\0").encode("utf-8") |
|
|
|
if stream == "true" or stream == True: |
|
return StreamingResponse(stream_results()) |
|
|
|
# Non-streaming case |
|
final_output = None |
|
for request_output in results: |
|
if request.is_disconnected(): |
|
# Abort the request if the client disconnects. |
|
engine.abort(request_id) |
|
return Response(status_code=499) |
|
final_output = request_output[len(prompt) :] |
|
|
|
assert final_output is not None |
|
ret = {"text": final_output} |
|
return JSONResponse(ret) |
|
|
|
|
|
@app.post("/completion") |
|
async def create_completion(request: Request): |
|
request_dict = await request.json() |
|
stream = request_dict.pop("stream", "false") |
|
if isinstance(stream, str): |
|
stream = stream.lower() |
|
generation_config = get_generation_config(request_dict) |
|
result = await completion_serving.create_completion(request, generation_config) |
|
|
|
ret = {"request_id": result.request_id, "text": result.output} |
|
if stream == "true" or stream == True: |
|
return StreamingResponse(content=json.dumps(ret) + "\0", media_type="text/event-stream") |
|
else: |
|
return JSONResponse(content=ret) |
|
|
|
|
|
@app.post("/chat") |
|
async def create_chat(request: Request): |
|
request_dict = await request.json() |
|
|
|
stream = request_dict.get("stream", "false") |
|
if isinstance(stream, str): |
|
stream = stream.lower() |
|
generation_config = get_generation_config(request_dict) |
|
message = await chat_serving.create_chat(request, generation_config) |
|
if stream == "true" or stream == True: |
|
return StreamingResponse(content=message, media_type="text/event-stream") |
|
else: |
|
ret = {"role": message.role, "text": message.content} |
|
return ret |
|
|
|
|
|
def get_generation_config(request): |
|
generation_config = async_engine.engine.generation_config |
|
for arg in request: |
|
if hasattr(generation_config, arg): |
|
setattr(generation_config, arg, request[arg]) |
|
return generation_config |
|
|
|
|
|
def add_engine_config(parser): |
|
parser.add_argument( |
|
"-m", "--model", type=str, default="llama2-7b", help="name or path of the huggingface model to use" |
|
) |
|
# Parallel arguments not supported now |
|
|
|
# KV cache arguments |
|
parser.add_argument("--block_size", type=int, default=16, choices=[16, 32], help="token block size") |
|
|
|
parser.add_argument("--max_batch_size", type=int, default=8, help="maximum number of batch size") |
|
|
|
parser.add_argument("-i", "--max_input_len", type=int, default=128, help="max input length") |
|
|
|
parser.add_argument("-o", "--max_output_len", type=int, default=128, help="max output length") |
|
|
|
parser.add_argument("-d", "--dtype", type=str, default="fp16", help="Data type", choices=["fp16", "fp32", "bf16"]) |
|
|
|
parser.add_argument("--use_cuda_kernel", action="store_true", help="Use CUDA kernel, use Triton by default") |
|
|
|
# generation arguments |
|
parser.add_argument( |
|
"--prompt_template", |
|
choices=prompt_template_choices, |
|
default=None, |
|
help=f"Allowed choices are {','.join(prompt_template_choices)}. Default to None.", |
|
) |
|
return parser |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Colossal-Inference API server.") |
|
|
|
parser.add_argument("--host", type=str, default="127.0.0.1") |
|
parser.add_argument("--port", type=int, default=8000, help="port of FastAPI server.") |
|
parser.add_argument("--ssl-keyfile", type=str, default=None) |
|
parser.add_argument("--ssl-certfile", type=str, default=None) |
|
parser.add_argument( |
|
"--root-path", type=str, default=None, help="FastAPI root_path when app is behind a path based routing proxy" |
|
) |
|
parser.add_argument( |
|
"--model-name", |
|
type=str, |
|
default=None, |
|
help="The model name used in the API. If not " |
|
"specified, the model name will be the same as " |
|
"the huggingface name.", |
|
) |
|
|
|
parser.add_argument( |
|
"--chat-template", |
|
type=str, |
|
default=None, |
|
help="The file path to the chat template, " "or the template in single-line form " "for the specified model", |
|
) |
|
parser.add_argument( |
|
"--response-role", |
|
type=str, |
|
default="assistant", |
|
help="The role name to return if " "`request.add_generation_prompt=true`.", |
|
) |
|
parser = add_engine_config(parser) |
|
|
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
inference_config = InferenceConfig.from_dict(vars(args)) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model) |
|
colossalai_backend_port = find_available_ports(1)[0] |
|
colossalai.launch( |
|
rank=0, |
|
world_size=1, |
|
host=args.host, |
|
port=colossalai_backend_port, |
|
backend="nccl", |
|
) |
|
model = AutoModelForCausalLM.from_pretrained(args.model) |
|
async_engine = AsyncInferenceEngine( |
|
start_engine_loop=True, model_or_path=model, tokenizer=tokenizer, inference_config=inference_config |
|
) |
|
engine = async_engine.engine |
|
completion_serving = CompletionServing(async_engine, model.__class__.__name__) |
|
chat_serving = ChatServing( |
|
async_engine, |
|
served_model=model.__class__.__name__, |
|
tokenizer=tokenizer, |
|
response_role=args.response_role, |
|
chat_template=args.chat_template, |
|
) |
|
app.root_path = args.root_path |
|
uvicorn.run( |
|
app=app, |
|
host=args.host, |
|
port=args.port, |
|
log_level="debug", |
|
timeout_keep_alive=TIMEOUT_KEEP_ALIVE, |
|
ssl_keyfile=args.ssl_keyfile, |
|
ssl_certfile=args.ssl_certfile, |
|
)
|
|
|