You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_tensor/model/test_module_spec.py

228 lines
8.4 KiB

from copy import deepcopy
import pytest
import torch
import colossalai
from colossalai.nn.parallel.layers import check_colo_module, init_colo_module
from colossalai.tensor import (
ColoTensor,
ColoTensorSpec,
ComputePattern,
ComputeSpec,
ProcessGroup,
ReplicaSpec,
ShardSpec,
distspec,
)
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.utils.cuda import get_current_device
from colossalai.zero import ColoInitContext
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_tensor.common_utils import set_seed, tensor_equal, tensor_shard_equal
def run_model_with_spec(mode, model_name):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
world_size = torch.distributed.get_world_size()
pg = ProcessGroup(tp_degree=world_size)
rank = pg.rank()
set_seed(1)
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=False)
if rank == 0:
model_seq = model_builder(checkpoint=False)
model_seq = model_seq.cuda()
# Make two models have the same init params
for p1, p2 in zip(model.parameters(), model_seq.parameters()):
p2.data.copy_(p1.data)
compute_spec = ComputeSpec(ComputePattern.TP1D)
# Not all layers in Bert can be mod by 4.
# e.g. row shard for all layers is invalid because the first dim of some layer is the classification type size 2.
if 'bert' == model_name:
if 'col' == mode:
init_colo_module(model.bert.embeddings, compute_spec, pg=pg, recursive=True, mode=mode)
init_colo_module(model.bert.encoder, compute_spec, pg=pg, recursive=True, mode=mode)
init_colo_module(model.classifier, compute_spec, pg=pg, recursive=True, mode='row')
elif 'row' == mode:
init_colo_module(model.bert.embeddings, compute_spec, pg=pg, recursive=True, mode='col')
init_colo_module(model.bert.encoder, compute_spec, pg=pg, recursive=True, mode=mode)
init_colo_module(model.classifier, compute_spec, pg=pg, recursive=True, mode=mode)
elif 'simple_net' == model_name:
init_colo_module(model, compute_spec, pg=pg, recursive=True, mode=mode)
model = model.cuda()
for i, (data, label) in enumerate(train_dataloader):
data = data.to(get_current_device())
label = label.to(get_current_device())
torch.distributed.broadcast(data, 0, group=pg.tp_process_group())
torch.distributed.broadcast(label, 0, group=pg.tp_process_group())
if criterion:
output = model(data)
loss = criterion(output, label)
else:
output = model(data, label)
loss = output
# For reference
if rank == 0:
if criterion:
output_seq = model_seq(data)
loss_seq = criterion(output_seq, label)
else:
output_seq = model_seq(data, label)
loss_seq = output_seq
if rank == 0:
with torch.no_grad():
assert torch.allclose(loss, loss_seq, rtol=1e-2)
loss.backward()
if rank == 0:
loss_seq.backward()
with torch.no_grad():
# check param
for p1, p2 in zip(model.parameters(), model_seq.parameters()):
if p1.size() == p2.size():
assert torch.allclose(p1, p2)
else:
if p1.size(-1) < p2.size(-1): # col
world_size = p2.size(-1) // p1.size(-1)
split_p2 = torch.chunk(p2, world_size, dim=-1)[0]
elif p1.size(0) < p2.size(0): # row
world_size = p2.size(0) // p1.size(0)
split_p2 = torch.chunk(p2, world_size, dim=0)[0]
assert torch.allclose(p1, split_p2)
if i > 3:
break
def run_linear_with_spec(mode):
with ColoInitContext(device=get_current_device()):
model = torch.nn.Linear(4, 8)
model_handy = deepcopy(model)
world_size = torch.distributed.get_world_size()
pg = ProcessGroup(tp_degree=world_size)
compute_spec = ComputeSpec(ComputePattern.TP1D)
init_colo_module(model, compute_spec, pg=pg, recursive=True, mode=mode)
x = torch.rand(2, 4).cuda()
colo_x = ColoTensor.from_torch_tensor(x, ColoTensorSpec(pg))
out = model(x)
colo_out = model_handy(colo_x)
assert tensor_equal(out, colo_out)
grad = torch.rand_like(out)
out.backward(grad)
colo_out.backward(grad)
assert tensor_shard_equal(model_handy.weight.grad, model.weight.grad, pg.tp_local_rank(), pg.tp_world_size())
assert tensor_shard_equal(model_handy.bias.grad, model.bias.grad, pg.tp_local_rank(), pg.tp_world_size())
def run_check_shared_param():
from transformers import BertConfig, BertForMaskedLM
hidden_dim = 8
num_head = 4
sequence_length = 12
num_layer = 2
vocab_size = 24
world_size = torch.distributed.get_world_size()
pg = ProcessGroup(tp_degree=world_size)
rank = pg.rank()
config = BertConfig(vocab_size=vocab_size,
hidden_size=hidden_dim,
intermediate_size=hidden_dim * 4,
num_attention_heads=num_head,
max_position_embeddings=sequence_length,
num_hidden_layers=num_layer,
hidden_dropout_prob=0.,
attention_probs_dropout_prob=0.)
with ColoInitContext(device=get_current_device()):
model = BertForMaskedLM(config)
model = model.cuda()
compute_spec = ComputeSpec(ComputePattern.TP1D)
# model.cls.predictions.decoder and model.cls.predictions share the bias, so they should have the same spec
assert len(model.cls.predictions.decoder.bias.shared_param_modules) == 2
# They are all Linear, so both row is allowed. This should pass check.
init_colo_module(model, compute_spec, pg=pg, recursive=True, mode='row')
# This should be detected by check because you can not set weight as row while set bias as col.
col_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
# TODO(jiaruifang) optimize this line
if not model.cls.predictions.bias.has_initialized:
model.cls.predictions.bias.pg = pg
model.cls.predictions.bias.dist_spec = ReplicaSpec()
model.cls.predictions.bias.has_initialized = True
model.cls.predictions.bias.set_tensor_spec(*col_spec)
try:
check_colo_module(model.cls.predictions.decoder, pg=pg, recursive=False)
except Exception as e:
assert 'incorrectly sharded' in str(e)
def run_dist(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_linear_with_spec('col')
run_linear_with_spec('row')
def run_dist_model(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
for model_name in ['simple_net', 'bert']:
run_model_with_spec('col', model_name)
run_model_with_spec('row', model_name)
def run_dist_check(rank, world_size, port):
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_check_shared_param()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@pytest.mark.skip("for higher testing speed")
@rerun_if_address_is_in_use()
def test_module_linear_1d(world_size):
spawn(run_dist, world_size)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@pytest.mark.skip("for higher testing speed")
@rerun_if_address_is_in_use()
def test_module_model(world_size):
spawn(run_dist_model, world_size)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@pytest.mark.skip("for higher testing speed")
@rerun_if_address_is_in_use()
def test_module_check(world_size):
spawn(run_dist_check, world_size)
if __name__ == '__main__':
test_module_linear_1d(4)