Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

27 lines
1.0 KiB

import pytest
from lazy_init_utils import SUPPORT_LAZY, check_lazy_init
from tests.kit.model_zoo import COMMON_MODELS, IS_FAST_TEST, model_zoo
@pytest.mark.skipif(not SUPPORT_LAZY, reason="requires torch >= 1.12.0")
@pytest.mark.parametrize(
"subset",
[COMMON_MODELS]
if IS_FAST_TEST
else ["torchvision", "diffusers", "timm", "transformers", "torchaudio", "deepfm", "dlrm"],
)
@pytest.mark.parametrize("default_device", ["cpu", "cuda"])
def test_torchvision_models_lazy_init(subset, default_device):
sub_model_zoo = model_zoo.get_sub_registry(subset, allow_empty=True)
for name, entry in sub_model_zoo.items():
# TODO(ver217): lazy init does not support weight norm, skip these models
if name in ("torchaudio_wav2vec2_base", "torchaudio_hubert_base") or name.startswith(
("transformers_vit", "transformers_blip2")
):
continue
check_lazy_init(entry, verbose=True, default_device=default_device)
if __name__ == "__main__":
test_torchvision_models_lazy_init("transformers", "cpu")