mirror of https://github.com/hpcaitech/ColossalAI
145 lines
5.0 KiB
Python
145 lines
5.0 KiB
Python
import os
|
|
|
|
import torch
|
|
from titans.dataloader.cifar10 import build_cifar
|
|
from titans.model.vit.vit import _create_vit_model
|
|
from tqdm import tqdm
|
|
|
|
import colossalai
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.nn import CrossEntropyLoss
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
|
from colossalai.nn.optimizer import Lamb, Lars
|
|
from colossalai.pipeline.pipelinable import PipelinableContext
|
|
from colossalai.utils import get_dataloader, is_using_pp
|
|
|
|
|
|
class DummyDataloader():
|
|
|
|
def __init__(self, length, batch_size):
|
|
self.length = length
|
|
self.batch_size = batch_size
|
|
|
|
def generate(self):
|
|
data = torch.rand(self.batch_size, 3, 224, 224)
|
|
label = torch.randint(low=0, high=10, size=(self.batch_size,))
|
|
return data, label
|
|
|
|
def __iter__(self):
|
|
self.step = 0
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.step < self.length:
|
|
self.step += 1
|
|
return self.generate()
|
|
else:
|
|
raise StopIteration
|
|
|
|
def __len__(self):
|
|
return self.length
|
|
|
|
|
|
def main():
|
|
# initialize distributed setting
|
|
parser = colossalai.get_default_parser()
|
|
parser.add_argument('-s', '--synthetic', action="store_true", help="whether use synthetic data")
|
|
args = parser.parse_args()
|
|
|
|
# launch from torch
|
|
colossalai.launch_from_torch(config=args.config)
|
|
|
|
# get logger
|
|
logger = get_dist_logger()
|
|
logger.info("initialized distributed environment", ranks=[0])
|
|
|
|
if hasattr(gpc.config, 'LOG_PATH'):
|
|
if gpc.get_global_rank() == 0:
|
|
log_path = gpc.config.LOG_PATH
|
|
if not os.path.exists(log_path):
|
|
os.mkdir(log_path)
|
|
logger.log_to_file(log_path)
|
|
|
|
use_pipeline = is_using_pp()
|
|
|
|
# create model
|
|
model_kwargs = dict(img_size=gpc.config.IMG_SIZE,
|
|
patch_size=gpc.config.PATCH_SIZE,
|
|
hidden_size=gpc.config.HIDDEN_SIZE,
|
|
depth=gpc.config.DEPTH,
|
|
num_heads=gpc.config.NUM_HEADS,
|
|
mlp_ratio=gpc.config.MLP_RATIO,
|
|
num_classes=10,
|
|
init_method='jax',
|
|
checkpoint=gpc.config.CHECKPOINT)
|
|
|
|
if use_pipeline:
|
|
pipelinable = PipelinableContext()
|
|
with pipelinable:
|
|
model = _create_vit_model(**model_kwargs)
|
|
pipelinable.to_layer_list()
|
|
pipelinable.policy = "uniform"
|
|
model = pipelinable.partition(1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE))
|
|
else:
|
|
model = _create_vit_model(**model_kwargs)
|
|
|
|
# count number of parameters
|
|
total_numel = 0
|
|
for p in model.parameters():
|
|
total_numel += p.numel()
|
|
if not gpc.is_initialized(ParallelMode.PIPELINE):
|
|
pipeline_stage = 0
|
|
else:
|
|
pipeline_stage = gpc.get_local_rank(ParallelMode.PIPELINE)
|
|
logger.info(f"number of parameters: {total_numel} on pipeline stage {pipeline_stage}")
|
|
|
|
# create dataloaders
|
|
root = os.environ.get('DATA', '../data/')
|
|
if args.synthetic:
|
|
train_dataloader = DummyDataloader(length=30, batch_size=gpc.config.BATCH_SIZE)
|
|
test_dataloader = DummyDataloader(length=10, batch_size=gpc.config.BATCH_SIZE)
|
|
else:
|
|
train_dataloader, test_dataloader = build_cifar(gpc.config.BATCH_SIZE, root, pad_if_needed=True)
|
|
|
|
# create loss function
|
|
criterion = CrossEntropyLoss(label_smoothing=0.1)
|
|
|
|
# create optimizer
|
|
optimizer = Lars(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
|
|
|
|
# create lr scheduler
|
|
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
|
|
total_steps=gpc.config.NUM_EPOCHS,
|
|
warmup_steps=gpc.config.WARMUP_EPOCHS)
|
|
|
|
# initialize
|
|
engine, train_dataloader, test_dataloader, _ = colossalai.initialize(model=model,
|
|
optimizer=optimizer,
|
|
criterion=criterion,
|
|
train_dataloader=train_dataloader,
|
|
test_dataloader=test_dataloader)
|
|
|
|
logger.info("Engine is built", ranks=[0])
|
|
|
|
for epoch in range(gpc.config.NUM_EPOCHS):
|
|
# training
|
|
engine.train()
|
|
data_iter = iter(train_dataloader)
|
|
|
|
if gpc.get_global_rank() == 0:
|
|
description = 'Epoch {} / {}'.format(epoch, gpc.config.NUM_EPOCHS)
|
|
progress = tqdm(range(len(train_dataloader)), desc=description)
|
|
else:
|
|
progress = range(len(train_dataloader))
|
|
for _ in progress:
|
|
engine.zero_grad()
|
|
engine.execute_schedule(data_iter, return_output_label=False)
|
|
engine.step()
|
|
lr_scheduler.step()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|