mirror of https://github.com/hpcaitech/ColossalAI
182 lines
6.6 KiB
Python
182 lines
6.6 KiB
Python
import os
|
|
import random
|
|
import h5py
|
|
import logging
|
|
import json
|
|
import time
|
|
from concurrent.futures import ProcessPoolExecutor
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.utils.data import DataLoader, Dataset
|
|
from torch.utils.data.sampler import RandomSampler
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
from bert_dataset_provider import BertDatasetProviderInterface
|
|
import colossalai.utils as utils
|
|
|
|
# Workaround because python functions are not picklable
|
|
class WorkerInitObj(object):
|
|
def __init__(self, seed):
|
|
self.seed = seed
|
|
|
|
def __call__(self, id):
|
|
np.random.seed(seed=self.seed + id)
|
|
random.seed(self.seed + id)
|
|
|
|
|
|
def create_pretraining_dataset(input_file, max_predictions_per_seq,
|
|
num_workers, train_batch_size, worker_init,
|
|
data_sampler):
|
|
train_data = pretraining_dataset(
|
|
input_file=input_file, max_predictions_per_seq=max_predictions_per_seq)
|
|
train_dataloader = DataLoader(train_data,
|
|
sampler=data_sampler(train_data),
|
|
batch_size=train_batch_size,
|
|
num_workers=num_workers,
|
|
worker_init_fn=worker_init,
|
|
pin_memory=True
|
|
)
|
|
return train_dataloader, len(train_data)
|
|
|
|
|
|
class pretraining_dataset(Dataset):
|
|
def __init__(self, input_file, max_predictions_per_seq):
|
|
self.input_file = input_file
|
|
self.max_predictions_per_seq = max_predictions_per_seq
|
|
f = h5py.File(input_file, "r")
|
|
keys = [
|
|
'input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions'
|
|
]
|
|
self.inputs = [np.asarray(f[key][:]) for key in keys]
|
|
f.close()
|
|
|
|
def __len__(self):
|
|
'Denotes the total number of samples'
|
|
return len(self.inputs[0])
|
|
|
|
def __getitem__(self, index):
|
|
|
|
[
|
|
input_ids, input_mask, segment_ids, masked_lm_labels
|
|
] = [
|
|
torch.from_numpy(input[index].astype(np.int64)) if indice < 5 else
|
|
torch.from_numpy(np.asarray(input[index].astype(np.int64)))
|
|
for indice, input in enumerate(self.inputs)
|
|
]
|
|
|
|
return [
|
|
input_ids, input_mask,
|
|
segment_ids, masked_lm_labels
|
|
]
|
|
|
|
|
|
class NvidiaBertDatasetProvider(BertDatasetProviderInterface):
|
|
def __init__(self, args, evaluate=False):
|
|
self.num_workers = args.num_workers
|
|
self.max_seq_length = args.max_seq_length
|
|
self.max_predictions_per_seq = args.max_predictions_per_seq
|
|
|
|
self.gradient_accumulation_steps = args.gradient_accumulation_steps
|
|
if not evaluate:
|
|
self.train_micro_batch_size_per_gpu = args.train_micro_batch_size_per_gpu
|
|
else:
|
|
self.train_micro_batch_size_per_gpu = args.eval_micro_batch_size_per_gpu
|
|
self.logger = args.logger
|
|
|
|
self.global_rank = dist.get_rank()
|
|
self.world_size = dist.get_world_size()
|
|
|
|
# Initialize dataset files
|
|
if not evaluate:
|
|
self.dataset_files = [
|
|
os.path.join(args.data_path_prefix, f) for f in os.listdir(args.data_path_prefix) if
|
|
os.path.isfile(os.path.join(args.data_path_prefix, f)) and 'h5' in f
|
|
]
|
|
else:
|
|
self.dataset_files = [
|
|
os.path.join(args.eval_data_path_prefix, f) for f in os.listdir(args.eval_data_path_prefix) if
|
|
os.path.isfile(os.path.join(args.eval_data_path_prefix, f)) and 'h5' in f
|
|
]
|
|
|
|
self.dataset_files.sort()
|
|
# random.shuffle(self.dataset_files)
|
|
self.num_files = len(self.dataset_files)
|
|
# self.data_sampler = RandomSampler
|
|
self.data_sampler = DistributedSampler
|
|
|
|
self.worker_init = WorkerInitObj(args.seed + args.local_rank)
|
|
self.dataset_future = None
|
|
self.pool = ProcessPoolExecutor(1)
|
|
self.data_file = None
|
|
self.shuffle = True
|
|
|
|
if self.global_rank == 0:
|
|
self.logger.info(
|
|
f"NvidiaBertDatasetProvider - Initialization: num_files = {self.num_files}"
|
|
)
|
|
|
|
def get_shard(self, index):
|
|
start = time.time()
|
|
if self.dataset_future is None:
|
|
self.data_file = self._get_shard_file(index)
|
|
self.train_dataloader, sample_count = create_pretraining_dataset(
|
|
input_file=self.data_file,
|
|
max_predictions_per_seq=self.max_predictions_per_seq,
|
|
num_workers=self.num_workers,
|
|
train_batch_size=self.train_micro_batch_size_per_gpu,
|
|
worker_init=self.worker_init,
|
|
data_sampler=self.data_sampler)
|
|
else:
|
|
self.train_dataloader, sample_count = self.dataset_future.result(
|
|
timeout=None)
|
|
|
|
self.logger.info(
|
|
f"Data Loading Completed for Pretraining Data from {self.data_file} with {sample_count} samples took {time.time()-start:.2f}s."
|
|
)
|
|
|
|
return self.train_dataloader, sample_count
|
|
|
|
def release_shard(self):
|
|
del self.train_dataloader
|
|
self.pool.shutdown()
|
|
|
|
def prefetch_shard(self, index):
|
|
self.data_file = self._get_shard_file(index)
|
|
self.dataset_future = self.pool.submit(
|
|
create_pretraining_dataset, self.data_file,
|
|
self.max_predictions_per_seq, self.num_workers,
|
|
self.train_micro_batch_size_per_gpu, self.worker_init,
|
|
self.data_sampler)
|
|
|
|
def get_batch(self, batch_iter):
|
|
return batch_iter
|
|
|
|
def prefetch_batch(self):
|
|
pass
|
|
|
|
def _get_shard_file(self, shard_index):
|
|
file_index = self._get_shard_file_index(shard_index, self.global_rank)
|
|
return self.dataset_files[file_index]
|
|
|
|
def _get_shard_file_index(self, shard_index, global_rank):
|
|
# if dist.is_initialized() and self.world_size > self.num_files:
|
|
# remainder = self.world_size % self.num_files
|
|
# file_index = (shard_index * self.world_size) + global_rank + (
|
|
# remainder * shard_index)
|
|
# else:
|
|
# file_index = shard_index * self.world_size + global_rank
|
|
|
|
return shard_index % self.num_files
|
|
|
|
def shuffle_dataset(self, epoch):
|
|
if self.shuffle:
|
|
# deterministically shuffle based on epoch and seed
|
|
g = torch.Generator()
|
|
g.manual_seed(self.epoch)
|
|
indices = torch.randperm(self.num_files, generator=g).tolist()
|
|
new_dataset = [self.dataset_files[i] for i in indices]
|
|
self.dataset_files = new_dataset
|
|
|