mirror of https://github.com/hpcaitech/ColossalAI
133 lines
4.5 KiB
Python
133 lines
4.5 KiB
Python
from abc import ABC, abstractmethod
|
|
from contextlib import nullcontext
|
|
from typing import Any, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from coati.models.base import Actor, get_base_model
|
|
from coati.replay_buffer import ReplayBuffer
|
|
from torch.optim import Optimizer
|
|
from torch.utils.data import DataLoader
|
|
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
|
|
|
from .sampler import DistributedSampler
|
|
|
|
ModelOptimPair = Tuple[nn.Module, Optimizer]
|
|
ModelOrModelOptimPair = Union[nn.Module, ModelOptimPair]
|
|
|
|
|
|
class Strategy(ABC):
|
|
"""
|
|
Base class for training strategies.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.setup_distributed()
|
|
|
|
@abstractmethod
|
|
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: Optimizer, **kwargs) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def optimizer_step(self, optimizer: Optimizer, **kwargs) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def setup_distributed(self) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def setup_model(self, model: nn.Module) -> nn.Module:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def setup_optimizer(self, optimizer: Optimizer, model: nn.Module) -> Optimizer:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader:
|
|
pass
|
|
|
|
def model_init_context(self):
|
|
return nullcontext()
|
|
|
|
def prepare(
|
|
self, *models_or_model_optim_pairs: ModelOrModelOptimPair
|
|
) -> Union[List[ModelOrModelOptimPair], ModelOrModelOptimPair]:
|
|
"""Prepare models or model-optimizer-pairs based on each strategy.
|
|
|
|
Example::
|
|
>>> # when fine-tuning actor and critic
|
|
>>> (actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare((actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
|
|
>>> # or when training reward model
|
|
>>> (reward_model, reward_model_optim) = strategy.prepare((reward_model, reward_model_optim))
|
|
>>> # or just inference
|
|
>>> actor, critic = strategy.prepare(actor, critic)
|
|
|
|
Returns:
|
|
Union[List[ModelOrModelOptimPair], ModelOrModelOptimPair]: Models or model-optimizer-pairs in the original order.
|
|
"""
|
|
|
|
def prepare_model(model: nn.Module):
|
|
if isinstance(model, Actor):
|
|
return Actor(self.setup_model(model.get_base_model()))
|
|
return self.setup_model(model)
|
|
|
|
rets = []
|
|
for arg in models_or_model_optim_pairs:
|
|
if isinstance(arg, tuple):
|
|
assert len(arg) == 2, f'Expect (model, optimizer) pair, got a tuple with size "{len(arg)}"'
|
|
model, optimizer = arg
|
|
model = prepare_model(model)
|
|
optimizer = self.setup_optimizer(optimizer, get_base_model(model))
|
|
rets.append((model, optimizer))
|
|
elif isinstance(arg, nn.Module):
|
|
rets.append(prepare_model(arg))
|
|
else:
|
|
raise RuntimeError(f'Expect model or (model, optimizer) pair, got {type(arg)}')
|
|
|
|
if len(rets) == 1:
|
|
return rets[0]
|
|
return rets
|
|
|
|
@staticmethod
|
|
def unwrap_model(model: nn.Module) -> nn.Module:
|
|
"""Get the unwrapped model from a wrapped model. Useful for getting original huggingface model.
|
|
For Actor, it will unwrap `actor.model`.
|
|
|
|
Args:
|
|
model (nn.Module): the model to unwrap
|
|
|
|
Returns:
|
|
nn.Module: the original model (usually a huggingface model)
|
|
"""
|
|
return get_base_model(model)
|
|
|
|
@abstractmethod
|
|
def save_model(self, model: nn.Module, path: str, only_rank0: bool = True) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def load_model(self, model: nn.Module, path: str, map_location: Any = None, strict: bool = True) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def load_optimizer(self, optimizer: Optimizer, path: str, map_location: Any = None) -> None:
|
|
pass
|
|
|
|
def setup_sampler(self, dataset) -> DistributedSampler:
|
|
return DistributedSampler(dataset, 1, 0)
|
|
|
|
@abstractmethod
|
|
def save_pretrained(self,
|
|
model: nn.Module,
|
|
path: str,
|
|
only_rank0: bool = True,
|
|
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
|
|
pass
|