ColossalAI/tests/test_gemini/test_mem_tracer.py

52 lines
2.0 KiB
Python

from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import colossalai
from colossalai.gemini.memory_tracer import MemtracerWrapper
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from tests.components_to_test import run_fwd_bwd
from tests.components_to_test.registry import non_distributed_component_funcs
def run_tracer(rank, world_size, port, use_grad_check=True):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
test_models = ['repeated_computed_layers', 'resnet18', 'no_leaf_module', 'bert']
# test_models = ['bert']
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, _, _, criterion = get_components_func()
# init model on cpu
# TODO() memtrace hook can not handle buff registered on a non-leaf module (for example the BertEmbedding).
# a simple method is that always puts buff on cuda and viewed them as non-model data.
model = MemtracerWrapper(model_builder(checkpoint=use_grad_check))
for n, buff in model.named_buffers():
buff.data = buff.data.cuda()
for i, (data, label) in enumerate(train_dataloader):
if i > 1:
break
data = data.cuda()
label = label.cuda()
run_fwd_bwd(model, data, label, criterion, False, use_init_ctx=False)
model._ophook_list[0].print_non_model_data()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1])
@pytest.mark.parametrize("use_grad_check", [True, False])
@rerun_if_address_is_in_use()
def test_tracer(world_size, use_grad_check):
run_func = partial(run_tracer, world_size=world_size, port=free_port(), use_grad_check=use_grad_check)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_tracer(1, True)