mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
2.8 KiB
101 lines
2.8 KiB
#!/usr/bin/env python |
|
# -*- encoding: utf-8 -*- |
|
|
|
import os |
|
from functools import partial |
|
from pathlib import Path |
|
|
|
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
import torch.multiprocessing as mp |
|
from torchvision import transforms |
|
from torch.utils.data import DataLoader |
|
|
|
import colossalai |
|
from colossalai.builder import build_dataset, build_transform |
|
from colossalai.context import ParallelMode, Config |
|
from colossalai.core import global_context as gpc |
|
|
|
CONFIG = Config( |
|
dict( |
|
train_data=dict( |
|
dataset=dict( |
|
type='CIFAR10', |
|
root=Path(os.environ['DATA']), |
|
train=True, |
|
download=True, |
|
), |
|
dataloader=dict( |
|
num_workers=2, |
|
batch_size=2, |
|
shuffle=True |
|
), |
|
transform_pipeline=[ |
|
dict(type='ToTensor'), |
|
dict(type='RandomCrop', size=32), |
|
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) |
|
] |
|
), |
|
parallel=dict( |
|
pipeline=dict(size=1), |
|
tensor=dict(size=1, mode=None), |
|
), |
|
seed=1024, |
|
) |
|
) |
|
|
|
|
|
def run_data_sampler(rank, world_size): |
|
dist_args = dict( |
|
config=CONFIG, |
|
rank=rank, |
|
world_size=world_size, |
|
backend='gloo', |
|
port='29904', |
|
host='localhost' |
|
) |
|
colossalai.launch(**dist_args) |
|
|
|
dataset_cfg = gpc.config.train_data.dataset |
|
dataloader_cfg = gpc.config.train_data.dataloader |
|
transform_cfg = gpc.config.train_data.transform_pipeline |
|
|
|
# build transform |
|
transform_pipeline = [build_transform(cfg) for cfg in transform_cfg] |
|
transform_pipeline = transforms.Compose(transform_pipeline) |
|
dataset_cfg['transform'] = transform_pipeline |
|
|
|
# build dataset |
|
dataset = build_dataset(dataset_cfg) |
|
|
|
# build dataloader |
|
dataloader = DataLoader(dataset=dataset, **dataloader_cfg) |
|
|
|
data_iter = iter(dataloader) |
|
img, label = data_iter.next() |
|
img = img[0] |
|
|
|
if gpc.get_local_rank(ParallelMode.DATA) != 0: |
|
img_to_compare = img.clone() |
|
else: |
|
img_to_compare = img |
|
dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA)) |
|
|
|
if gpc.get_local_rank(ParallelMode.DATA) != 0: |
|
# this is without sampler |
|
# this should be false if data parallel sampler to given to the dataloader |
|
assert torch.equal(img, |
|
img_to_compare), 'Same image was distributed across ranks and expected it to be the same' |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@pytest.mark.cpu |
|
def test_data_sampler(): |
|
world_size = 4 |
|
test_func = partial(run_data_sampler, world_size=world_size) |
|
mp.spawn(test_func, nprocs=world_size) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_data_sampler()
|
|
|