Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

664 lines
24 KiB

from types import MethodType
from typing import Callable, Optional, Union
import torch
import torch.nn as nn
from packaging import version
from torch import Tensor
from torch.nn import Parameter
from torch.utils._pytree import tree_map
from colossalai.logging import get_dist_logger
from .construction import ConstructorManager
from .pretrained import PretrainedManager
import colossalai._analyzer._subclasses._meta_registration # noqa
# reference: https://pytorch.org/cppdocs/notes/tensor_creation.html
_NORMAL_FACTORY = [
"arange",
"full",
"empty",
"linspace",
"logspace",
"ones",
"rand",
"randn",
"randint",
"randperm",
"zeros",
"tensor",
]
# factory function that does not support meta tensor backend
_NO_META_FACTORY = [
"eye",
]
_EARLY_MATERIALIZED_OPS = ["__getitem__", "split"]
# If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset)
# without autograd tracking the change, remove the .data / .detach() call and wrap the change in a `with torch.no_grad():` block.
# These ops cannot be unwrapped using .data
_CHANGE_META_OPS = ["_cudnn_rnn_flatten_weight", "requires_grad_", "__get__", "__set__", "numel", "size", "dim"]
# These ops is not related to tensor value and should not be rerun
_NO_RERUN_OPS = ["__get__", "numel", "size", "dim"]
_LEGACY_TENSOR_CONSTRUCTOR = {
"FloatTensor": torch.float,
"DoubleTensor": torch.double,
"HalfTensor": torch.half,
"BFloat16Tensor": torch.bfloat16,
"ByteTensor": torch.uint8,
"CharTensor": torch.int8,
"ShortTensor": torch.short,
"IntTensor": torch.int,
"LongTensor": torch.long,
"BoolTensor": torch.bool,
}
# These ops have at least one lazy tensor argument and maybe a scalar argument
# scalar value should be converted to meta tensor
# this is a hack for torch 2.0
_EXPAND_SCALAR_OPS = [
"where",
"clamp",
"clamp_min",
"clamp_max",
"clamp_",
"clamp_min_",
"clamp_max_",
]
_old_tensor_factory = torch.tensor
_EMPTY_DATA = torch.empty(0)
class _MyTensor(Tensor):
"""This class is only for correctness verification."""
_pre_op_fn: Callable[["LazyTensor"], None] = lambda *args: None
default_device: Optional[torch.device] = None
def __new__(cls, func, *args, concrete_data=None, **kwargs) -> "_MyTensor":
cls._pre_op_fn()
if concrete_data is not None:
# uniform api as LazyTensor
data = concrete_data
else:
kwargs["device"] = cls.default_device
data = func(*args, **kwargs)
return Tensor._make_subclass(cls, data, require_grad=data.requires_grad)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
cls._pre_op_fn()
return super().__torch_function__(func, types, args, kwargs)
def _data_tolist(tensor: torch.Tensor) -> list:
"""tolist() method is not allowed for a subclass of tensor. Tensor.data returns a Tensor."""
return tensor.data.tolist()
def _convert_cls(tensor: "LazyTensor", target: torch.Tensor) -> torch.Tensor:
"""Convert a lazy tensor's class to target's class, with target's data.
The reason why we change the class of a lazy tensor in-place is that this can easily handle shared modules/parameters, which is common in huggingface models.
If we create a new tensor and update the module by ``setattr(module, name, param)``, the shared parameters will not be updated. And we have to track all shared parameters and update them manually.
Args:
tensor (LazyTensor): the LazyTensor to be converted
target (torch.Tensor): target tensor
Returns:
torch.Tensor: the converted tensor
"""
cls_to_become = Parameter if isinstance(tensor, Parameter) else torch.Tensor
tensor.__class__ = cls_to_become
if cls_to_become is Parameter:
# to fit UninitializedParameter
delattr(tensor, "_is_param")
tensor.data = target
tensor.requires_grad = target.requires_grad
# subclass of torch.Tensor does not have tolist() method
# overwrite this method after materialization or distribution
tensor.tolist = MethodType(_data_tolist, tensor)
return tensor
class LazyTensor(torch.Tensor):
"""A naive implementation of LazyTensor (https://arxiv.org/pdf/2102.13267.pdf).
Usage:
1. Use ``LazyTensor`` instead of ``torch.Tensor``.
>>> x = LazyTensor(torch.zeros, 2, 3)
>>> x += 1
>>> y = x * x
>>> y = y.cuda().half()
>>> y[0, 0] = 0
>>> y = y.materialize() # materialize the tensor
>>> print(y)
tensor([[0., 1., 1.],
[1., 1., 1.]], device='cuda:0', dtype=torch.float16)
Warnings:
1. Cases that ``LazyTensor`` can't deal with.
>>> x = LazyTensor(torch.ones, 2, 3)
>>> x[0, 0] = -x[0, 0] # this will cause infinite recursion
>>> y = x.clone()
>>> x.add_(1) # modifying origin tensor after cloning leads to wrong materialization
>>> z = x.tolist()
>>> x.zeros_() # modifying origin tensor after cloning tolist is not allowed
>>> nn.utils.weight_norm(self.conv, name="weight", dim=2) # applying weight norm on a lazy tensor is not allowed
2. Cases that ``LazyTensor`` becomes eager (early materialization).
>>> b = a[:, 2:] # get a slice of a lazy tensor triggers early materialization
>>> chunks = a.split(3) # this also triggers early materialization
>>> x.data = torch.rand(2, 3) # directly setting data of a lazy tensor triggers early materialization
"""
_repr = True
_meta_data: Optional[torch.Tensor] = None # shape, dtype, device
_pre_op_fn: Callable[["LazyTensor"], None] = lambda *args: None
default_device: Optional[torch.device] = None
_device: torch.device # fake device of mate tensor
@staticmethod
def __new__(cls, func, *args, meta_data=None, concrete_data=None, **kwargs):
# tips for torch 2.0:
# torch 2.0 disables torch dispatch for subclass of tensor
# MetaTensor is cannot be used
# Now lazy tensor contains device injection and meta tensor
if concrete_data is not None:
# some ops don't support meta backend and should have concrete data
elem = concrete_data
else:
if meta_data is None:
with ConstructorManager.disable():
# to disable create lazy tensor in inner ops, this is a hack for torch 2.0
meta_data = func(*args, **{**kwargs, "device": "meta"})
elem = meta_data
# As a meta tensor cannot be modified __class__ to torch.Tensor, we should use an empty real tensor here
r = torch.Tensor._make_subclass(cls, _EMPTY_DATA, require_grad=elem.requires_grad)
r._meta_data = meta_data
return r
def __init__(self, func, *args, meta_data=None, concrete_data=None, **kwargs):
self._device = torch.device(kwargs.get("device", None) or "cpu")
if func.__name__ in _NORMAL_FACTORY:
kwargs = {**kwargs, "device": LazyTensor.default_device}
self._factory_method = (func, args, kwargs) # (func, args, kwargs)
self._op_buffer = [] # (func, args, kwargs, replace)
self._materialized_data: Optional[torch.Tensor] = concrete_data # materialized data
@property
def device(self) -> torch.device:
return self._materialized_data.device if self._materialized_data is not None else self._device
def __repr__(self):
return f"LazyTensor(..., size={tuple(self.shape)}, device='{self.device}', dtype={self.dtype})"
def materialize(self) -> torch.Tensor:
"""Materialize the ``LazyTensor`` to ``torch.Tensor`` by modifying __class__ (inplace).
Returns:
torch.Tensor: The materialized tensor (self).
"""
target = self._materialize_data()
self.clean()
return _convert_cls(self, target)
def clean(self) -> None:
"""Clean all stored operations, meta data and materialized data, which prevents memory leaking. This should be called after all tensors are materialized."""
delattr(self, "_factory_method")
delattr(self, "_op_buffer")
delattr(self, "_materialized_data")
delattr(self, "_meta_data")
@staticmethod
def _replace_with_materialized(x):
if isinstance(x, LazyTensor):
return x._materialize_data()
return x
def _materialize_data(self) -> torch.Tensor:
# self._materialized_data should be generated after the first call of this function
if self._materialized_data is None:
# apply factory method
func, args, kwargs = self._factory_method
# apply cached sequence
self._pre_op_fn()
init_val = func(
*tree_map(self._replace_with_materialized, args), **tree_map(self._replace_with_materialized, kwargs)
)
self._materialized_data = self._rerun_ops(init_val)
return self._materialized_data
def _rerun_ops(self, target=None) -> torch.Tensor:
"""Do lazy execution by rerunning all (stored) related operations.
Args:
target (torc.Tensor, optional): Intial value of the target tensor (self). Defaults to None.
"""
def replace(x):
if x is self:
return target
elif isinstance(x, LazyTensor):
return x._materialize_data()
return x
packed = None
for func, args, kwargs in self._op_buffer:
if func == torch.Tensor.requires_grad_:
packed = func, args, kwargs # requires grad should be set at last
else:
self._pre_op_fn()
o = func(*tree_map(replace, args), **tree_map(replace, kwargs))
target = o if isinstance(o, torch.Tensor) else target # if func returns non-Tensor, discard the value
# super-dainiu: set requires_grad after all inplace-ops are done
if packed is not None:
func, args, kwargs = packed
func(*tree_map(replace, args), **tree_map(replace, kwargs))
return target
# cache everything with __torch_function__
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func.__name__ in _EARLY_MATERIALIZED_OPS:
# These OPs cannot be lazy and related tensors should be early materialized
tree_map(cls._replace_with_materialized, args)
tree_map(cls._replace_with_materialized, kwargs)
is_inplace: bool = (
func.__name__.endswith("_")
and not (func.__name__.endswith("__"))
or func.__name__ in ("__setitem__", "__set__")
)
is_change_meta_op: bool = func.__name__ in _CHANGE_META_OPS
if isinstance(func, torch._C.ScriptMethod):
# FIXME(ver217): torch script functions are not verified
target = None
def unwrap(x):
if isinstance(x, LazyTensor):
return x._meta_data
return x
target: LazyTensor = args[0].clone()
target._op_buffer.append((func, args, kwargs))
target._meta_data = getattr(target._meta_data, func.name)(
*tree_map(unwrap, args[1:]), **tree_map(unwrap, kwargs)
)
return target
else:
meta_to_lazy = {}
def unwrap(x):
if isinstance(x, LazyTensor):
if x._materialized_data is not None:
# for early materialized tensor, use its materialized data directly
return x._materialized_data if is_change_meta_op else x._materialized_data.data
t = x if is_inplace else x.clone()
if func.__name__ not in _NO_RERUN_OPS:
t._op_buffer.append((func, args, kwargs))
meta = x._meta_data if is_change_meta_op else x._meta_data.data
meta_to_lazy[meta] = t
return meta
elif (
version.parse(torch.__version__) >= version.parse("2.0.0")
and func.__name__ in _EXPAND_SCALAR_OPS
and not isinstance(x, torch.Tensor)
):
return _old_tensor_factory(x, device="meta")
return x
def wrap(y, i=None):
if isinstance(y, torch.Tensor):
if y.is_meta:
if y in meta_to_lazy:
# inplace op, just return origin lazy tensor
return meta_to_lazy[y]
else:
# out of place op, create new lazy tensor
fn = lambda *a, **kw: func(*a, **kw) if i is None else func(*a, **kw)[i]
fn.__name__ = func.__name__
lazy_y = LazyTensor(fn, *args, meta_data=y, **kwargs)
return lazy_y
else:
# for early materialized tensor
return LazyTensor(lambda: None, concrete_data=y)
return y
cls._pre_op_fn()
with ConstructorManager.disable():
# to disable create lazy tensor in inner ops, this is a hack for torch 2.0
o = func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs))
if isinstance(o, (tuple, list)):
return type(o)(wrap(y, i=i) for i, y in enumerate(o))
return wrap(o)
def to(self, *args, **kwargs) -> torch.Tensor:
if self._materialized_data is not None:
return LazyTensor(lambda: None, concrete_data=self._materialized_data.to(*args, **kwargs))
device = None
def replace(x):
nonlocal device
if isinstance(x, (str, int, torch.device)) and not isinstance(x, bool):
device = x
return torch.device("meta")
return x
meta_data = self._meta_data.to(*tree_map(replace, args), **tree_map(replace, kwargs))
if meta_data is self._meta_data and device == self.device:
return self
def factory_fn(t: torch.Tensor, **kw):
return t.to(*args, **kwargs)
return LazyTensor(factory_fn, self, meta_data=meta_data, device=device)
def cpu(self, memory_format: torch.memory_format = torch.preserve_format):
return self.to(device=torch.device("cpu"), memory_format=memory_format)
def cuda(self, device=None, non_blocking=False, memory_format: torch.memory_format = torch.preserve_format):
device = torch.device(device or "cuda")
return self.to(device=device, non_blocking=non_blocking, memory_format=memory_format)
def clone(self) -> "LazyTensor":
def factory_fn(t: torch.Tensor, **kw):
# if self is materialized, return self
return t.clone()
target = LazyTensor(factory_fn, self, meta_data=self._meta_data)
return target
def detach(self) -> Tensor:
return self
def __deepcopy__(self, memo):
if not self.is_leaf:
raise RuntimeError(
"Only Tensors created explicitly by the user "
"(graph leaves) support the deepcopy protocol at the moment"
)
if id(self) in memo:
return memo[id(self)]
def factory_fn(t: torch.Tensor, **kw):
# if self is materialized, return self
return _copy_tensor(t, t.requires_grad)
if self._materialized_data is not None:
# self is early materialized
copied = _copy_tensor(self._materialized_data, self.requires_grad)
target = LazyTensor(lambda: None, concrete_data=copied)
else:
target = LazyTensor(factory_fn, self, meta_data=self._meta_data)
if isinstance(self, Parameter):
# hack isinstance check of parameter
target._is_param = True
memo[id(self)] = target
return target
@property
def data(self):
return self
@data.setter
def data(self, other: "LazyTensor"):
"""This is sightly different from oringinal `data` setter.
E.g.:
>>> a = torch.randn(3, 3) # a is a Tensor
>>> b = torch.rand(2, 2)
>>> a.data = b
>>> b.add_(1) # this will affect a
>>> x = torch.randn(3, 3) # x is a LazyTensor
>>> y = torch.rand(2, 2) # y is a LazyTensor
>>> x.data = y
>>> y.add_(1) # this will not affect x
"""
if other is self:
return
def replace(x):
if x is other:
return self
return x
for func, args, kwargs in [other._factory_method, *other._op_buffer]:
self._op_buffer.append((func, tree_map(replace, args), tree_map(replace, kwargs)))
def tolist(self) -> list:
# Though self.__class__ is modified to torch.Tensor, in C++ side, it is still a subclass of torch.Tensor
# And subclass of torch.Tensor does not have tolist() method
t = self._materialize_data()
return t.tolist()
def __hash__(self):
return id(self)
def __rpow__(self, other):
dtype = torch.result_type(self, other)
return torch.tensor(other, dtype=dtype, device=self.device) ** self
class LazyInitContext:
"""Context manager for lazy initialization. Enables initializing the model without allocating real memory.
Args:
tensor_cls (Union[_MyTensor, LazyTensor], optional): This is only for test. Defaults to LazyTensor.
default_device (Optional[Union[torch.device, str, int]], optional): Defalt device for initialization.
If it's cuda, initilization will be accelerated, but cuda memory will be allocated. By default, it's cpu.
Defaults to None.
"""
_replaced: bool = False
def __init__(
self,
tensor_cls: Union[_MyTensor, LazyTensor] = LazyTensor,
default_device: Optional[Union[torch.device, str, int]] = None,
):
assert tensor_cls is LazyTensor or tensor_cls is _MyTensor
self.tensor_cls = tensor_cls
self.old_default_device = LazyTensor.default_device
self.default_device = default_device
def __enter__(self):
if LazyInitContext._replaced:
raise RuntimeError(f"LazyInitContext is not reentrant")
LazyInitContext._replaced = True
self.old_default_device = self.tensor_cls.default_device
self.tensor_cls.default_device = self.default_device
def wrap_factory_method(target):
# factory functions (eg. torch.empty())
def wrapper(*args, **kwargs):
return self.tensor_cls(target, *args, **kwargs)
return wrapper, target
def wrap_factory_like_method(orig_target, target):
# factory_like functions (eg. torch.empty_like())
def wrapper(*args, **kwargs):
orig_t = args[0]
return self.tensor_cls(
orig_target, *orig_t.shape, *args[1:], device=orig_t.device, dtype=orig_t.dtype, **kwargs
)
return wrapper, target
def wrap_legacy_constructor(target, dtype):
# legacy constructor (e.g. torch.LongTensor())
def wrapper(*args, **kwargs):
if len(args) == 1 and isinstance(args[0], torch.Tensor):
# (Tensor other)
return args[0]
elif len(args) == 1:
# (object data, *, torch.device device)
kwargs = {**kwargs, "dtype": dtype}
replaced, orig = self.overrides["tensor"]
return replaced(*args, **kwargs)
elif _is_int_tuple(args):
# (tuple of ints size, *, torch.device device)
kwargs = {**kwargs, "dtype": dtype}
replaced, orig = self.overrides["empty"]
return replaced(*args, **kwargs)
else:
raise TypeError(
f"new() received an invalid combination of arguments - got {tuple(type(x) for x in args)}, but expected one of:\n * (Tensor other)\n * (tuple of ints size, *, torch.device device)\n * (object data, *, torch.device device)"
)
return wrapper, target
def wrap_no_meta_factory(target):
# factory functions which don't support meta tensor backend
def wrapper(*args, **kwargs):
tensor = target(*args, **kwargs)
return self.tensor_cls(lambda: None, concrete_data=tensor)
return wrapper, target
overrides = {
target: wrap_factory_method(getattr(torch, target))
for target in _NORMAL_FACTORY
if callable(getattr(torch, target, None))
}
overrides.update(
{
target + "_like": wrap_factory_like_method(getattr(torch, target), getattr(torch, target + "_like"))
for target in _NORMAL_FACTORY
if callable(getattr(torch, target + "_like", None))
}
)
overrides.update(
{
target: wrap_legacy_constructor(getattr(torch, target), dtype)
for target, dtype in _LEGACY_TENSOR_CONSTRUCTOR.items()
if callable(getattr(torch, target, None))
}
)
overrides.update(
{
target: wrap_no_meta_factory(getattr(torch, target))
for target in _NO_META_FACTORY
if callable(getattr(torch, target, None))
}
)
ConstructorManager.apply(overrides)
PretrainedManager.inject()
def __exit__(self, exc_type, exc_val, exc_tb):
self.tensor_cls.default_device = self.old_default_device
LazyInitContext._replaced = False
ConstructorManager.clear()
PretrainedManager.recover()
@staticmethod
def materialize(module: nn.Module, verbose: bool = False) -> nn.Module:
"""Initialize all ``Parameter`` from ``LazyTensor``. This function will modify the module in-place.
Args:
module (nn.Module): Target ``nn.Module``
verbose (bool): Whether to print lazy initialization rate. Defaults to False.
"""
def apply_fn(name: str, p: LazyTensor):
p.materialize()
return _apply_to_lazy_module(module, apply_fn, verbose)
def _apply_to_lazy_module(
module: nn.Module, apply_fn: Callable[[str, torch.Tensor], None], verbose: bool = False
) -> nn.Module:
if verbose:
# verbose info
param_cnt = 0
param_lazy_cnt = 0
buf_cnt = 0
buf_lazy_cnt = 0
total_numel = 0
non_lazy_numel = 0
for name, p in module.named_parameters():
if verbose:
param_cnt += 1
total_numel += p.numel()
if getattr(p, "_materialized_data", False) is None:
# if no _materialized_data attr, the tensor is not lazy
param_lazy_cnt += 1
else:
non_lazy_numel += p.numel()
if isinstance(p, LazyTensor):
apply_fn(name, p)
for name, buf in module.named_buffers():
if verbose:
buf_cnt += 1
total_numel += buf.numel()
if getattr(buf, "_materialized_data", False) is None:
# if no _materialized_data attr, the tensor is not lazy
buf_lazy_cnt += 1
else:
non_lazy_numel += buf.numel()
if isinstance(buf, LazyTensor):
apply_fn(name, buf)
if verbose:
non_lazy_numel_ratio = non_lazy_numel / total_numel * 100 if non_lazy_numel != 0 else 0
logger = get_dist_logger()
logger.info(f"Param lazy rate: {param_lazy_cnt}/{param_cnt}", ranks=[0])
logger.info(f"Buffer lazy rate: {buf_lazy_cnt}/{buf_cnt}", ranks=[0])
logger.info(
f"Non lazy numel: {non_lazy_numel} ({non_lazy_numel/1024**2:.3f} M), ratio: {non_lazy_numel_ratio}%",
ranks=[0],
)
return module
def _is_int_tuple(args) -> bool:
if not isinstance(args, tuple):
return False
for x in args:
if not isinstance(x, int):
return False
return True
def _copy_tensor(tensor: Tensor, requires_grad: bool) -> Tensor:
copied = tensor.data.clone()
copied.requires_grad = requires_grad
return copied