mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
631 lines
24 KiB
631 lines
24 KiB
import torch
|
|
import torch.distributed as dist
|
|
from dataclasses import dataclass
|
|
from enum import Enum
|
|
from typing import Optional, Dict, Deque, Set, List, Tuple, Iterable
|
|
from collections import deque
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
|
class TensorState(Enum):
|
|
FREE = 0
|
|
COMPUTE = 1
|
|
HOLD = 2
|
|
HOLD_AFTER_BWD = 3
|
|
READY_FOR_REDUCE = 4
|
|
|
|
|
|
STATE_TRANS = ((TensorState.FREE, TensorState.HOLD), (TensorState.FREE, TensorState.COMPUTE),
|
|
(TensorState.HOLD, TensorState.FREE), (TensorState.HOLD, TensorState.COMPUTE),
|
|
(TensorState.COMPUTE, TensorState.HOLD), (TensorState.COMPUTE, TensorState.HOLD_AFTER_BWD),
|
|
(TensorState.COMPUTE, TensorState.READY_FOR_REDUCE), (TensorState.HOLD_AFTER_BWD, TensorState.COMPUTE),
|
|
(TensorState.HOLD_AFTER_BWD, TensorState.READY_FOR_REDUCE), (TensorState.READY_FOR_REDUCE,
|
|
TensorState.HOLD))
|
|
|
|
|
|
@dataclass
|
|
class TensorInfo:
|
|
state: TensorState
|
|
offset: int
|
|
end: int
|
|
|
|
|
|
class ChunkFullError(Exception):
|
|
pass
|
|
|
|
|
|
def is_storage_empty(tensor: torch.Tensor) -> bool:
|
|
return tensor.storage().size() == 0
|
|
|
|
|
|
def free_storage(tensor: torch.Tensor) -> None:
|
|
if not is_storage_empty(tensor):
|
|
tensor.storage().resize_(0)
|
|
|
|
|
|
def alloc_storage(tensor: torch.Tensor) -> None:
|
|
if is_storage_empty(tensor):
|
|
tensor.storage().resize_(tensor.numel())
|
|
|
|
|
|
class Chunk:
|
|
"""
|
|
A chunk is a contiguous memory space which contains multiple tensors.
|
|
|
|
Args:
|
|
chunk_size (int): the number of elements in a chunk
|
|
src_rank (int): the process which owns the chunk
|
|
dtype (torch.dtype): the data type of the chunk
|
|
init_device (torch.device): optional, the device where the tensor is initialized. The default value is None, which is the current GPU.
|
|
force_data_on_cuda (bool): optional, if True, chunk.data is always on cuda. Defaults to False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
chunk_size: int,
|
|
src_rank: int,
|
|
dtype: torch.dtype,
|
|
init_device: Optional[torch.device] = None,
|
|
force_data_on_cuda: bool = False) -> None:
|
|
self.size = chunk_size
|
|
self.utilized_size = 0
|
|
self.src_rank = src_rank
|
|
self.is_src_rank = gpc.get_local_rank(ParallelMode.DATA) == src_rank
|
|
self.global_src_rank = gpc.get_ranks_in_group(ParallelMode.DATA)[src_rank]
|
|
self.dtype = dtype
|
|
device = init_device or get_current_device()
|
|
if force_data_on_cuda:
|
|
self.data = torch.empty(chunk_size, dtype=dtype, device=get_current_device())
|
|
self._cpu_data = torch.empty(chunk_size, dtype=dtype)
|
|
if device.type == 'cuda':
|
|
free_storage(self._cpu_data)
|
|
else:
|
|
free_storage(self.data)
|
|
else:
|
|
self.data = torch.empty(chunk_size, dtype=dtype, device=device)
|
|
self._cpu_data = None
|
|
|
|
# we only keep the chunk in full in the process by which the tensor is owned
|
|
if not self.is_src_rank:
|
|
free_storage(self._payload)
|
|
|
|
# each tensor is associated with a TensorInfo to track meta info
|
|
self.tensors_info: Dict[torch.Tensor, TensorInfo] = {}
|
|
self.mem = self.size * self.data.element_size()
|
|
|
|
def append(self, tensor: torch.Tensor) -> None:
|
|
"""
|
|
Add a tensor to the chunk.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): a tensor to be added to the chunk
|
|
"""
|
|
assert tensor.dtype == self.dtype
|
|
new_utilized_size = self.utilized_size + tensor.numel()
|
|
|
|
# raise exception when the chunk size is exceeded
|
|
if new_utilized_size > self.size:
|
|
raise ChunkFullError
|
|
|
|
# set tensor state
|
|
tensor_state = TensorState.FREE
|
|
|
|
# if the process owns the rank, then copy the tensor to its chunk buffer
|
|
# otherwise set its storage size to 0 to reduce memory consumption
|
|
if self.is_src_rank:
|
|
self._payload[self.utilized_size:new_utilized_size].copy_(tensor.view(-1))
|
|
tensor_state = TensorState.HOLD
|
|
tensor.data = self._payload[self.utilized_size:new_utilized_size].view(tensor.shape)
|
|
else:
|
|
tensor.storage().resize_(0)
|
|
self.tensors_info[tensor] = TensorInfo(tensor_state, self.utilized_size, new_utilized_size)
|
|
self.utilized_size = new_utilized_size
|
|
|
|
def release(self) -> None:
|
|
"""
|
|
Release the memory space on processes which do not own the chunk.
|
|
"""
|
|
if not self.is_src_rank:
|
|
free_storage(self._payload)
|
|
self._update_tensors_state(TensorState.FREE)
|
|
|
|
def _update_tensors_ptr(self) -> None:
|
|
for tensor, tensor_info in self.tensors_info.items():
|
|
tensor.data = self._payload[tensor_info.offset:tensor_info.end].view(tensor.shape)
|
|
|
|
def _update_tensors_state(self, next_state: TensorState, prev_state: Optional[TensorState] = None):
|
|
for tensor_info in self.tensors_info.values():
|
|
if prev_state is None or tensor_info.state == prev_state:
|
|
tensor_info.state = next_state
|
|
|
|
def access(self) -> None:
|
|
"""
|
|
Broadcast the chunk to synchronize the tensors across data parallel processes.
|
|
"""
|
|
# recover the chunk on non-owner processes
|
|
# and broadcast the chunk from the source to all processes
|
|
if not self.is_src_rank:
|
|
alloc_storage(self._payload)
|
|
self.move_device(get_current_device(), update_ptr=False)
|
|
dist.broadcast(self.data, self.global_src_rank, group=gpc.get_group(ParallelMode.DATA))
|
|
|
|
# update tensor meta info
|
|
self._update_tensors_ptr()
|
|
if not self.is_src_rank:
|
|
self._update_tensors_state(TensorState.HOLD, prev_state=TensorState.FREE)
|
|
|
|
def move_device(self, device: torch.device, update_ptr: bool = True) -> None:
|
|
"""
|
|
Move the chunk to a target device.
|
|
|
|
Args:
|
|
device (torch.device): the target device for data movement.
|
|
"""
|
|
if self._payload.device == device:
|
|
return
|
|
if self._cpu_data is None:
|
|
self.data.data = self.data.to(device)
|
|
else:
|
|
if device.type == 'cuda':
|
|
# cpu -> cuda
|
|
src = self._cpu_data
|
|
dest = self.data
|
|
else:
|
|
# cuda -> cpu
|
|
src = self.data
|
|
dest = self._cpu_data
|
|
alloc_storage(dest)
|
|
dest.copy_(src)
|
|
free_storage(src)
|
|
|
|
if update_ptr:
|
|
self._update_tensors_ptr()
|
|
|
|
def reduce(self, is_all_reduce: bool = False) -> None:
|
|
"""
|
|
Reduce or all-reduce the chunk.
|
|
|
|
Args:
|
|
is_all_reduce (bool): optional, whether to all-reduce the chunk. The default is false.
|
|
"""
|
|
self.move_device(get_current_device(), update_ptr=False)
|
|
if is_all_reduce:
|
|
dist.all_reduce(self.data, group=gpc.get_group(ParallelMode.DATA))
|
|
else:
|
|
dist.reduce(self.data, self.global_src_rank, group=gpc.get_group(ParallelMode.DATA))
|
|
self._update_tensors_ptr()
|
|
self._update_tensors_state(TensorState.HOLD)
|
|
|
|
def tensor_trans_state(self, tensor: torch.Tensor, tensor_state: TensorState) -> None:
|
|
"""
|
|
Make a transition of the tensor into the next state.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): a torch Tensor object.
|
|
tensor_state (TensorState): the target state for transition.
|
|
"""
|
|
assert tensor != TensorState.FREE, 'Can only set a chunk of tensors to FREE'
|
|
# As the gradient hook can be triggered either before or after post-backward
|
|
# tensor's state can be compute -> hold_after_bwd -> ready_for_reduce
|
|
# or compute -> ready_for_reduce -> hold_after_bwd
|
|
# the second one is invalid, we just ignore ready_for_reduce -> hold_after_bwd
|
|
# this function only apply valid state transformation
|
|
# invalid calls will be ignored and nothing changes
|
|
if (self.tensors_info[tensor].state, tensor_state) not in STATE_TRANS:
|
|
# print(
|
|
# f'WARNING: Rank{gpc.get_global_rank()} apply invalid state trans: {self.tensors_info[tensor].state} to {tensor_state}'
|
|
# )
|
|
return
|
|
self.tensors_info[tensor].state = tensor_state
|
|
|
|
def copy_tensor_to_chunk_slice(self, tensor: torch.Tensor, data_slice: torch.Tensor) -> None:
|
|
"""
|
|
Copy data slice to the memory space indexed by the input tensor in the chunk.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): the tensor used to retrive meta information
|
|
data_slice (torch.Tensor): the tensor to be copied to the chunk
|
|
"""
|
|
tensor_info = self.tensors_info[tensor]
|
|
self._payload[tensor_info.offset:tensor_info.end].copy_(data_slice.view(-1))
|
|
tensor.data = self._payload[tensor_info.offset:tensor_info.end].view(tensor.shape)
|
|
|
|
@property
|
|
def can_release(self) -> bool:
|
|
"""
|
|
Check whether the chunk can be released.
|
|
"""
|
|
for tensor_info in self.tensors_info.values():
|
|
if tensor_info.state != TensorState.HOLD:
|
|
return False
|
|
return True
|
|
|
|
@property
|
|
def can_move_device(self) -> bool:
|
|
"""
|
|
Check whether the chunk can be moved across devices.
|
|
"""
|
|
for tensor_info in self.tensors_info.values():
|
|
if tensor_info.state in (TensorState.COMPUTE, TensorState.READY_FOR_REDUCE):
|
|
return False
|
|
return True
|
|
|
|
@property
|
|
def can_reduce(self) -> bool:
|
|
"""
|
|
Check whether the chunk can be reduced.
|
|
"""
|
|
for tensor_info in self.tensors_info.values():
|
|
if tensor_info.state != TensorState.READY_FOR_REDUCE:
|
|
return False
|
|
return True
|
|
|
|
@property
|
|
def is_empty(self) -> bool:
|
|
"""
|
|
Check whether the chunk is empty.
|
|
"""
|
|
return is_storage_empty(self._payload)
|
|
|
|
def __repr__(self) -> str:
|
|
return f'Chunk: src rank={self.src_rank} ,size={self.size}, utilization={self.utilized_size/self.size*100:.2f}%, freed={self.is_empty}, tensor states={[info.state.name for info in self.tensors_info.values()]}'
|
|
|
|
@property
|
|
def has_inf_or_nan(self) -> bool:
|
|
"""
|
|
Check if the chunk has inf or nan values.
|
|
"""
|
|
return torch.isinf(self._payload[:self.utilized_size]).any().item() or \
|
|
torch.isnan(self._payload[:self.utilized_size]).any().item()
|
|
|
|
def copy_(self, dest_chunk: 'Chunk'):
|
|
"""
|
|
Copy the data of this chunk to a destination chunk.
|
|
"""
|
|
assert not self.is_empty
|
|
assert not dest_chunk.is_empty
|
|
assert self.size == dest_chunk.size
|
|
assert self.utilized_size == dest_chunk.utilized_size
|
|
self._payload.copy_(dest_chunk._payload)
|
|
self._update_tensors_ptr()
|
|
|
|
@property
|
|
def device_type(self) -> str:
|
|
"""
|
|
Get the device type of the chunk.
|
|
"""
|
|
return self._payload.device.type
|
|
|
|
def __hash__(self) -> int:
|
|
return hash(id(self))
|
|
|
|
def __eq__(self, __o: object) -> bool:
|
|
return self is __o
|
|
|
|
def get_tensors(self) -> List[torch.Tensor]:
|
|
return list(self.tensors_info.keys())
|
|
|
|
@property
|
|
def _payload(self) -> torch.Tensor:
|
|
if self._cpu_data is None or is_storage_empty(self._cpu_data):
|
|
return self.data
|
|
return self._cpu_data
|
|
|
|
|
|
class ChunkManager:
|
|
"""
|
|
A manager class to manipulate the tensors in chunks.
|
|
|
|
Args:
|
|
chunk_size (int): the size of a chunk.
|
|
enable_distributed_storage (bool): optional, allow for distributed storage of a chunk. The default is false.
|
|
init_device (torch.device): optional, the device on which the chunk is initialized. The default is None.
|
|
"""
|
|
|
|
def __init__(self,
|
|
chunk_size: Optional[int],
|
|
enable_distributed_storage: bool = False,
|
|
init_device: Optional[torch.device] = None) -> None:
|
|
assert chunk_size is None or chunk_size > 0
|
|
self.chunk_size = chunk_size
|
|
self.enable_distributed_storage = enable_distributed_storage
|
|
self.device = init_device or get_current_device()
|
|
self.chunk_groups: Dict[str, Deque[Chunk]] = {}
|
|
self.groups_force_data_on_cuda: Dict[str, bool] = {}
|
|
self.tensor_chunk_map: Dict[torch.Tensor, Chunk] = {}
|
|
self.accessed_chunks: Set[Chunk] = set()
|
|
self.lazy_release_tensors: List[torch.Tensor] = []
|
|
if enable_distributed_storage and chunk_size is None:
|
|
self.rank_load: Dict[str, torch.Tensor] = {}
|
|
self.total_mem: Dict[str, int] = {'cpu': 0, 'cuda': 0}
|
|
|
|
def create_group(self, group_name: str, force_data_on_cuda: bool = False) -> None:
|
|
"""Create a chunk group.
|
|
|
|
Args:
|
|
group_name (str): group name
|
|
force_data_on_cuda (bool, optional): If True, the data of chunks in this group is always on cuda.. Defaults to False.
|
|
"""
|
|
assert group_name not in self.chunk_groups
|
|
self.chunk_groups[group_name] = deque()
|
|
self.groups_force_data_on_cuda[group_name] = force_data_on_cuda
|
|
|
|
def append_tensor(self, tensor: torch.Tensor, group_name: str) -> None:
|
|
"""
|
|
Append a tensor to a chunk.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): a tensor to append to the chunk.
|
|
group_name (str): the name of the chunk group.
|
|
"""
|
|
assert tensor not in self.tensor_chunk_map
|
|
if self.chunk_size is not None and tensor.numel() > self.chunk_size:
|
|
raise ValueError(
|
|
f'Cannot create chunk, got tensor numel ({tensor.numel()}) > chunk size ({self.chunk_size})')
|
|
try:
|
|
# append the tensor to the last chunk
|
|
self.chunk_groups[group_name][-1].append(tensor)
|
|
except (IndexError, ChunkFullError):
|
|
# the except statement will be triggered when there is no chunk or
|
|
# the last chunk in the chunk group is full
|
|
# this will create a new chunk and allocate this chunk to its corresponding process
|
|
chunk_size = self.chunk_size or tensor.numel()
|
|
src_rank = self._get_next_src_rank(group_name)
|
|
chunk = Chunk(chunk_size,
|
|
src_rank,
|
|
tensor.dtype,
|
|
self.device,
|
|
force_data_on_cuda=self.groups_force_data_on_cuda[group_name])
|
|
|
|
if self.enable_distributed_storage and self.chunk_size is None:
|
|
self.rank_load[group_name][src_rank] += chunk_size
|
|
|
|
self.chunk_groups[group_name].append(chunk)
|
|
chunk.append(tensor)
|
|
if not chunk.is_empty:
|
|
self.total_mem[chunk.device_type] += chunk.mem
|
|
self.tensor_chunk_map[tensor] = self.chunk_groups[group_name][-1]
|
|
if not self.enable_distributed_storage:
|
|
# as distributed storage is not enabled, there is no need to broadcast
|
|
# chunks, thus we set these chunks as accessed
|
|
self.accessed_chunks.add(self.chunk_groups[group_name][-1])
|
|
|
|
def _get_next_src_rank(self, group_name: str) -> int:
|
|
if not self.enable_distributed_storage:
|
|
# the chunk is owned by the current rank if no distributed storage is enabled
|
|
return gpc.get_local_rank(ParallelMode.DATA)
|
|
if self.chunk_size is None:
|
|
if group_name not in self.rank_load:
|
|
self.rank_load[group_name] = torch.zeros(gpc.get_world_size(ParallelMode.DATA), dtype=torch.int64)
|
|
|
|
# the process owning the tensor will be the process with the smallest number of elements
|
|
src_rank = torch.argmin(self.rank_load[group_name]).item()
|
|
else:
|
|
# chunk is owned by processes in a round-robin fashion
|
|
chunk_idx = len(self.chunk_groups[group_name])
|
|
src_rank = chunk_idx % gpc.get_world_size(ParallelMode.DATA)
|
|
return src_rank
|
|
|
|
def access_chunk(self, chunk: Chunk) -> None:
|
|
"""
|
|
Synchronize the chunks via broadcast.
|
|
|
|
Args:
|
|
chunk (Chunk): the chunk to synchronize.
|
|
"""
|
|
if chunk in self.accessed_chunks:
|
|
if chunk.device_type != 'cuda':
|
|
self.total_mem[chunk.device_type] -= chunk.mem
|
|
chunk.move_device(get_current_device())
|
|
self.total_mem[chunk.device_type] += chunk.mem
|
|
return
|
|
if not chunk.is_empty:
|
|
# as tensor is moved to the target device
|
|
# the memory consumption of the original device is reduced
|
|
self.total_mem[chunk.device_type] -= chunk.mem
|
|
chunk.access()
|
|
self.accessed_chunks.add(chunk)
|
|
self.total_mem[chunk.device_type] += chunk.mem
|
|
|
|
def release_chunk(self, chunk: Chunk) -> None:
|
|
"""
|
|
Release the memory space of a chunk.
|
|
|
|
Args:
|
|
chunk (Chunk): the chunk to release memory space
|
|
"""
|
|
|
|
if not self.enable_distributed_storage:
|
|
return
|
|
if chunk not in self.accessed_chunks:
|
|
return
|
|
if chunk.can_release:
|
|
chunk.release()
|
|
self.accessed_chunks.remove(chunk)
|
|
if chunk.is_empty:
|
|
# update the memory consumption after releasing
|
|
self.total_mem[chunk.device_type] -= chunk.mem
|
|
|
|
def move_chunk(self, chunk: Chunk, device: torch.device, update_ptr: bool = True) -> None:
|
|
"""
|
|
Move the chunk to the target device.
|
|
|
|
Args:
|
|
chunk (Chunk): the chunk to move to target device
|
|
device (torch.device): target device
|
|
"""
|
|
if chunk.data.device == device:
|
|
return
|
|
if chunk.can_move_device and not chunk.is_empty:
|
|
self.total_mem[chunk.device_type] -= chunk.mem
|
|
chunk.move_device(device, update_ptr=update_ptr)
|
|
self.total_mem[chunk.device_type] += chunk.mem
|
|
|
|
def trans_tensor_state(self, tensor: torch.Tensor, state: TensorState) -> None:
|
|
"""
|
|
Transit tensor state according to pre-defined state machine.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): the tensor for state transititon
|
|
state (TensorState): next tensor state for transtition
|
|
"""
|
|
chunk = self.tensor_chunk_map[tensor]
|
|
chunk.tensor_trans_state(tensor, state)
|
|
|
|
def reduce_chunk(self, chunk: Chunk) -> bool:
|
|
"""
|
|
Reduce or all reduce the chunk. If enable_distributed_storage is true, all-reduce is used.
|
|
Otherwise, this method uses reduce.
|
|
|
|
Args:
|
|
chunk (Chunk): the chunk for reduction.
|
|
"""
|
|
if not chunk.can_reduce:
|
|
return False
|
|
self.total_mem[chunk.device_type] -= chunk.mem
|
|
chunk.reduce(is_all_reduce=not self.enable_distributed_storage)
|
|
self.total_mem[chunk.device_type] += chunk.mem
|
|
return True
|
|
|
|
def copy_tensor_to_chunk_slice(self, tensor: torch.Tensor, data: torch.Tensor) -> None:
|
|
"""
|
|
Copy data to the chunk.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): the tensor used to retrive meta information
|
|
data (torch.Tensor): the tensor to be copied to the chunk
|
|
"""
|
|
chunk = self.tensor_chunk_map[tensor]
|
|
chunk.copy_tensor_to_chunk_slice(tensor, data)
|
|
|
|
def get_chunk(self, tensor: torch.Tensor) -> Chunk:
|
|
"""
|
|
Return the chunk owning the tensor.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): a torch tensor object
|
|
"""
|
|
return self.tensor_chunk_map[tensor]
|
|
|
|
def add_lazy_release_tensors(self, tensors: List[torch.Tensor]) -> None:
|
|
"""
|
|
Add tensors to the buffer for lazy release.
|
|
|
|
Args:
|
|
tensors (List[torch.Tensor]): the tensors to be released lazily
|
|
"""
|
|
self.lazy_release_tensors.extend(tensors)
|
|
|
|
def exec_lazy_release(self) -> None:
|
|
"""
|
|
Execute release for tensors added to the lazy release buffer.
|
|
"""
|
|
|
|
for chunk in self.get_chunks(self.lazy_release_tensors):
|
|
self.release_chunk(chunk)
|
|
self.lazy_release_tensors.clear()
|
|
|
|
def __repr__(self) -> str:
|
|
msg = f'Rank {gpc.get_local_rank(ParallelMode.DATA)}:\n'
|
|
msg += 'Total memory: ' + ', '.join([f'{k}={v}B' for k, v in self.total_mem.items()]) + '\n'
|
|
for group_name, group in self.chunk_groups.items():
|
|
msg += f'Group {group_name}:\n'
|
|
for i, chunk in enumerate(group):
|
|
msg += f'[{i}] {chunk}\n'
|
|
return msg
|
|
|
|
@staticmethod
|
|
def get_chunk_util(chunk_size: int, params_numel: List[int]) -> float:
|
|
"""
|
|
Calculate the utilization rate of a chunk.
|
|
|
|
Args:
|
|
chunk_size (int): the size of a chunk
|
|
params_numel (List[int]): the list of integers representing the number of elements of parameters
|
|
"""
|
|
assert len(params_numel) > 0
|
|
total_size = 0
|
|
total_utilized_size = 0
|
|
cur_chunk_utilized_size = 0
|
|
for size in params_numel:
|
|
assert chunk_size >= size
|
|
total_utilized_size += size
|
|
if total_size == 0 or cur_chunk_utilized_size + size > chunk_size:
|
|
total_size += chunk_size
|
|
cur_chunk_utilized_size = 0
|
|
cur_chunk_utilized_size += size
|
|
return total_utilized_size / total_size
|
|
|
|
@staticmethod
|
|
def search_chunk_size(module: torch.nn.Module,
|
|
search_range: int,
|
|
n_grids: int,
|
|
min_chunk_size: Optional[int] = None) -> int:
|
|
"""
|
|
Search for the chunk size for optimal chunk utilization.
|
|
|
|
Args:
|
|
module (torch.nn.Module): a torch module object
|
|
search_range (int): the range of chunk size to search. The actual search range will be from
|
|
max(min_chunk_size, max_param_size) to max(min_chunk_size, max_param_size) + search_range.
|
|
n_grids (int): the number of intervals in the search range
|
|
min_chunk_size (int): optional, the minimum size for a chunk. The default is None.
|
|
|
|
"""
|
|
assert search_range % n_grids == 0
|
|
# TODO(ver217): sort params and filter unused ones
|
|
params_numel = [p.numel() for p in module.parameters()]
|
|
max_param_numel = max(params_numel)
|
|
if min_chunk_size is not None:
|
|
assert min_chunk_size >= max_param_numel
|
|
else:
|
|
min_chunk_size = max_param_numel
|
|
step_size = search_range // n_grids
|
|
max_chunk_util = -1
|
|
best_chunk_size = -1
|
|
for chunk_size in range(min_chunk_size, min_chunk_size + search_range + 1, step_size):
|
|
chunk_util = ChunkManager.get_chunk_util(chunk_size, params_numel)
|
|
if chunk_util > max_chunk_util:
|
|
max_chunk_util = chunk_util
|
|
best_chunk_size = chunk_size
|
|
return best_chunk_size
|
|
|
|
def copy_chunk_group(self, dest_group_name: str, src_group_name: str):
|
|
"""
|
|
Copy chunk data from one group to another group.
|
|
|
|
Args:
|
|
dest_group_name (str): the destination group which receives the copied data
|
|
src_group_name (str): the source group which provides the data to copy
|
|
"""
|
|
for dest_chunk, src_chunk in zip(self.chunk_groups[dest_group_name], self.chunk_groups[src_group_name]):
|
|
if not dest_chunk.is_empty:
|
|
dest_chunk.copy_(src_chunk)
|
|
|
|
def get_chunks(self, tensors: Iterable[torch.Tensor]) -> Tuple[Chunk, ...]:
|
|
"""
|
|
Get all chunks owning the input tensors.
|
|
|
|
Args:
|
|
tensors (Iterable[torch.Tensor]): the tensors used to look for chunks
|
|
"""
|
|
chunks = []
|
|
for tensor in tensors:
|
|
chunk = self.get_chunk(tensor)
|
|
if chunk not in chunks:
|
|
chunks.append(chunk)
|
|
return tuple(chunks)
|
|
|
|
def add_extern_static_tensor(self, tensor: torch.Tensor) -> None:
|
|
"""Add extern static tensor to chunk manager.
|
|
Those tensors won't be managed by chunk manager, but we want to monitor memory usage of them.
|
|
They are "static", which means their shape, dtype, device never change.
|
|
Thus, their memory usage never changes.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): An extern static tensor. E.g. optimizer state.
|
|
"""
|
|
assert tensor not in self.tensor_chunk_map
|
|
self.total_mem[tensor.device.type] += tensor.numel() * tensor.element_size()
|