Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

74 lines
2.5 KiB

import pytest
import torch
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM
from colossalai.inference.modeling.models.glide_llama import GlideLlamaConfig, GlideLlamaForCausalLM
from colossalai.inference.spec.drafter import Drafter
from colossalai.utils import get_current_device
NUM_LAYERS = 1
MAX_LEN = 100
SPEC_NUM = 5
@pytest.fixture(scope="module")
def tokenizer():
return AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
@pytest.mark.parametrize("spec_num", [SPEC_NUM])
def test_drafter(tokenizer, spec_num: int):
torch.manual_seed(123)
device = get_current_device()
toy_config = LlamaConfig(num_hidden_layers=NUM_LAYERS)
toy_config.pad_token_id = tokenizer.eos_token_id
drafter_model = LlamaForCausalLM(toy_config)
drafter_model = drafter_model.eval().cuda()
drafter = Drafter(drafter_model, tokenizer, device=device)
input_ids = torch.randint(low=5, high=1000, size=(1, 6)).to(device)
out = drafter.speculate(input_ids, spec_num)
past_kv_length = input_ids.size(1) + spec_num - 1
assert out.speculated_length == spec_num
assert out.next_tokens.shape == (spec_num,)
assert out.logits.shape == (spec_num, len(tokenizer))
assert out.past_key_values[0][0].size(2) == past_kv_length
reject_num = max(0, spec_num - 1)
trimmed_past_key_values = drafter.trim_kv_cache(out.past_key_values, reject_num)
assert trimmed_past_key_values[0][0].size(2) == past_kv_length - reject_num
def test_spec_dec(tokenizer):
spec_num = SPEC_NUM
device = get_current_device()
tokenizer.pad_token = tokenizer.eos_token
# Dummy config for Glide Model
glide_config = GlideLlamaConfig(
intermediate_size=8192,
large_hidden_size=4096,
large_num_attention_heads=32,
num_hidden_layers=NUM_LAYERS,
)
drafter_model = GlideLlamaForCausalLM(glide_config)
assert hasattr(drafter_model, "model")
assert hasattr(drafter_model.model, "layers")
for _, layer in enumerate(drafter_model.model.layers):
assert hasattr(layer, "cross_attn")
# Init the Drafter by providing the sharded drafter model
drafter = Drafter(drafter_model, tokenizer, device=device, dtype=torch.float16)
input_ids = torch.randint(low=5, high=1000, size=(1, 6)).to(device)
out = drafter.speculate(input_ids, spec_num, past_key_values=None)
if __name__ == "__main__":
dummy_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
test_drafter(dummy_tokenizer, spec_num=SPEC_NUM)
test_spec_dec(dummy_tokenizer)