Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

41 lines
1.4 KiB

import torch
import colossalai
from colossalai.legacy.zero.gemini.tensor_utils import colo_model_data_tensor_move, colo_model_data_tensor_move_inline
from colossalai.legacy.zero.sharded_param import ShardedTensor
from colossalai.testing import rerun_if_address_is_in_use, spawn
def run_tensor_move(rank, world_size, port):
colossalai.legacy.launch(rank=0, world_size=world_size, host="localhost", port=port, backend="nccl")
src_t = torch.ones(2, 3).cuda()
tgt_t = torch.zeros(2, 3)
colo_model_data_tensor_move(src_t, tgt_t)
assert torch.sum(tgt_t) == 6.0, f"{torch.sum(tgt_t.payload)} vs. 6.0"
src_t = torch.ones(2, 3)
tgt_t = torch.zeros(2, 3).cuda().half()
colo_model_data_tensor_move(src_t, tgt_t)
# the src_t has been removed
assert src_t.numel() == 0
assert torch.sum(tgt_t) == 6.0, f"{torch.sum(tgt_t.payload)} vs. 6.0"
src_t = ShardedTensor(torch.ones(2, 3))
tgt_t = ShardedTensor(torch.zeros(2, 3).cuda().half())
colo_model_data_tensor_move(src_t, tgt_t)
assert torch.sum(tgt_t.payload) == 6.0, f"{torch.sum(tgt_t.payload)} vs. 6.0"
assert tgt_t.device.type == "cuda"
colo_model_data_tensor_move_inline(tgt_t, torch.device("cpu"))
assert tgt_t.device.type == "cpu"
@rerun_if_address_is_in_use()
def test_tensor_move():
spawn(run_tensor_move, 1)
if __name__ == "__main__":
test_tensor_move()