Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

83 lines
2.9 KiB

from functools import partial
import torch
from colossalai.fx.tracer.meta_patch import patched_function
from colossalai.testing import clear_cache_before_run
def _run(data, patch_fn):
try:
output = patch_fn(data)
return output
except Exception as e:
return e
def _assert_output_shape(data, patch_fn, expect_exception, output_shape):
output = _run(data, patch_fn)
if expect_exception:
assert isinstance(output, AssertionError)
else:
assert not isinstance(output, Exception)
assert output.is_meta
assert output.shape == output_shape
@clear_cache_before_run()
def test_repeat_interleave():
patch_fn = patched_function.torch_repeat_interleave
# examples from https://pytorch.org/docs/stable/generated/torch.repeat_interleave.html
data = torch.tensor([1, 2, 3])
materialized_output = torch.repeat_interleave(data, repeats=2)
repeat_interleave = partial(patch_fn, repeats=2)
meta_data = data.to("meta")
_assert_output_shape(
data=meta_data, patch_fn=repeat_interleave, expect_exception=False, output_shape=materialized_output.shape
)
data = torch.tensor([[1, 2], [3, 4]])
materialized_output = torch.repeat_interleave(data, repeats=3, dim=1)
repeat_interleave = partial(patch_fn, repeats=3, dim=1)
meta_data = data.to("meta")
_assert_output_shape(
data=meta_data, patch_fn=repeat_interleave, expect_exception=False, output_shape=materialized_output.shape
)
data = torch.tensor([[1, 2], [3, 4]])
materialized_output = torch.repeat_interleave(data, repeats=torch.tensor([1, 2]), dim=-1)
repeat_interleave = partial(patch_fn, repeats=torch.tensor([1, 2]), dim=-1)
meta_data = data.to("meta")
_assert_output_shape(
data=meta_data, patch_fn=repeat_interleave, expect_exception=False, output_shape=materialized_output.shape
)
data = torch.tensor([[1, 2], [3, 4]])
materialized_output = torch.repeat_interleave(data, repeats=torch.tensor([1, 2]), dim=0)
repeat_interleave = partial(patch_fn, repeats=[1, 2], dim=0)
meta_data = data.to("meta")
_assert_output_shape(
data=meta_data, patch_fn=repeat_interleave, expect_exception=True, output_shape=materialized_output.shape
)
@clear_cache_before_run()
def test_torch_max():
data = torch.rand(4, 3)
out = torch.max(data)
patched_out = patched_function.torch_max(data)
assert out.shape == patched_out.shape
data = torch.rand(4, 3, 2)
out, idx = torch.max(data, dim=1)
patched_out, patched_idx = patched_function.torch_max(data, dim=1)
assert out.shape == patched_out.shape
assert idx.shape == patched_idx.shape
data = torch.rand(4, 3, 2)
out, idx = torch.max(data, dim=1, keepdim=True)
patched_out, patched_idx = patched_function.torch_max(data, dim=1, keepdim=True)
assert out.shape == patched_out.shape
assert idx.shape == patched_idx.shape