mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
52 lines
1.6 KiB
52 lines
1.6 KiB
import torch.nn as nn |
|
from transformers import GPT2Config, GPT2LMHeadModel |
|
|
|
|
|
class GPTLMModel(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
num_layers=12, |
|
num_attention_heads=12, |
|
max_seq_len=1024, |
|
vocab_size=50257, |
|
checkpoint=False, |
|
): |
|
super().__init__() |
|
self.checkpoint = checkpoint |
|
self.model = GPT2LMHeadModel( |
|
GPT2Config( |
|
n_embd=hidden_size, |
|
n_layer=num_layers, |
|
n_head=num_attention_heads, |
|
n_positions=max_seq_len, |
|
n_ctx=max_seq_len, |
|
vocab_size=vocab_size, |
|
) |
|
) |
|
if checkpoint: |
|
self.model.gradient_checkpointing_enable() |
|
|
|
def forward(self, input_ids, attention_mask): |
|
# Only return lm_logits |
|
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0] |
|
|
|
|
|
class GPTLMLoss(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.loss_fn = nn.CrossEntropyLoss() |
|
|
|
def forward(self, logits, labels): |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
# Flatten the tokens |
|
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
|
|
def gpt2_medium(checkpoint=False): |
|
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint) |
|
|
|
|
|
def gpt2_xl(checkpoint=False): |
|
return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32, checkpoint=checkpoint)
|
|
|